Some -complex- sum

Algebra Level 5

z 2 m + z 2 m 1 + z 2 m 2 + + z + 1 = 0 \large z^{2m}+z^{2m-1} + z^{2m-2} + \ldots+z+1=0

Let the roots of the equation above be z 1 , z 2 , , z 2 m z_1, z_2, \ldots, z_{2m} . Find the value of r = 1 2 m 1 z r 1 \displaystyle\sum_{r=1}^{2m} \frac1{z_r-1} .

m m 2 m -2m 2 m 2m m -m

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

z 2 m + z 2 m 1 + z 2 m 2 + . . . + z + 1 = 0 z 2 m + 1 + z 2 m + z 2 m 1 + . . . + z 2 + z = 0 z 2 m + 1 + z 2 m + z 2 m 1 + . . . + z 2 + z + 1 = 1 z 2 m + 1 + 0 = 1 \begin{aligned} z^{2m} + z^{2m-1} + z^{2m-2} + ... + z + 1 & = 0 \\ \Rightarrow z^{2m+1} + z^{2m} + z^{2m-1} + ... + z^2 + z & = 0 \\ z^{2m+1} + \color{#3D99F6}{z^{2m} + z^{2m-1} + ... + z^2 + z + 1} & = \color{#3D99F6}{1} \\ z^{2m+1} + \color{#3D99F6}{0} & = \color{#3D99F6}{1} \end{aligned}

z r = e 2 r π 2 m + 1 i \Rightarrow z_r = e^{\frac{2r\pi}{2m+1}i} are the ( 2 m + 1 ) t h (2m+1)^{th} complex roots of unity.

r = 1 2 m 1 z r 1 = r = 1 2 m 1 e 2 r π 2 m + 1 i 1 = r = 1 2 m e r π 2 m + 1 i e r π 2 m + 1 i e r π 2 m + 1 i = r = 1 2 m cos r π 2 m + 1 sin r π 2 m + 1 i cos r π 2 m + 1 + sin r π 2 m + 1 i ( cos r π 2 m + 1 sin r π 2 m + 1 i ) = r = 1 2 m cos r π 2 m + 1 sin r π 2 m + 1 i 2 sin r π 2 m + 1 i = 1 2 r = 1 2 m [ cot ( r π 2 m + 1 ) i + 1 ] = 1 2 [ 0 r = 1 2 m 1 ] [ cot ( r π 2 m + 1 ) = cot ( 2 m r π 2 m + 1 ) ] = m \begin{aligned} \Rightarrow \sum_{r=1}^{2m} \frac{1}{z_r -1} & = \sum_{r=1}^{2m} \frac{1}{e^{\frac{2r\pi}{2m+1}i} -1} \\ & = \sum_{r=1}^{2m} \frac{e^{-\frac{r\pi}{2m+1}i}}{e^{\frac{r\pi}{2m+1}i} -e^{-\frac{r\pi}{2m+1}i}} \\ & = \sum_{r=1}^{2m} \frac{\cos{\frac{r\pi}{2m+1}} - \sin{\frac{r\pi}{2m+1}}i}{\cos{\frac{r\pi}{2m+1}} + \sin{\frac{r\pi}{2m+1}}i - \left(\cos{\frac{r\pi}{2m+1}} - \sin{\frac{r\pi}{2m+1}}i\right)} \\ & = \sum_{r=1}^{2m} \frac{\cos{\frac{r\pi}{2m+1}} - \sin{\frac{r\pi}{2m+1}}i}{2 \sin{\frac{r\pi}{2m+1}}i} \\ & = - \frac{1}{2} \sum_{r=1}^{2m} \left[ \cot{\left(\frac{r\pi}{2m+1}\right)}i+1 \right] \\ & =- \frac{1}{2} \left[ \color{#3D99F6}{0} \sum_{r=1}^{2m} 1 \right] \quad \quad \small \color{#3D99F6}{\left[ \cot{\left(\frac{r\pi}{2m+1}\right)} = - \cot{\left(\frac{2m - r\pi}{2m+1}\right)}\right]} \\ & = \large \boxed{-m} \end{aligned}

Moderator note:

We used the special property of roots of unity here. How can we generalize this problem for any polynomial?

Since the given polynomial is monic, let us consider

f ( z ) = z 2 m + z 2 m 1 + + z + 1 = ( z z 1 ) ( z z 2 ) ( z z 2 m ) f(z) = z^{2m} + z^{2m-1} + \ldots + z + 1 = (z - z_1)(z-z_2)\ldots(z-z_{2m})

f ( z ) = r = 1 2 m ( z z r ) \Rightarrow f(z) = \displaystyle \prod_{r=1}^{2m} (z-z_r)

f ( z ) = ( z z 2 ) ( z z 3 ) ( z z 2 m ) + ( z z 1 ) ( z z 3 ) ( z z 2 m ) + + ( z z 1 ) ( z z 2 ) ( z z 2 m 1 ) \Rightarrow f’(z) = (z-z_2)(z-z_3)\ldots(z-z_{2m}) + (z-z_1)(z-z_3)\ldots(z-z_{2m}) + \ldots + (z-z_1)(z-z_2)\ldots(z-z_{2m-1})

f ( z ) = ( 2 m ) z 2 m 1 + ( 2 m 1 ) z 2 m 2 + + 2 z + 1 \Rightarrow f’(z) = (2m)z^{2m-1} + (2m-1)z^{2m-2} + \ldots + 2z + 1

Let the expression to be found be E E

E = r = 1 2 m 1 z r 1 = 1 z 1 1 + 1 z 2 1 + + 1 z 2 m 1 E = \displaystyle \sum_{r=1}^{2m} \dfrac{1}{z_r -1} = \dfrac{1}{z_1 - 1} + \dfrac{1}{z_2 - 1} + \ldots + \dfrac{1}{z_{2m} - 1}

E = ( z 2 1 ) ( z 3 1 ) ( z 2 m 1 ) + ( z 1 1 ) ( z 3 1 ) ( z 2 m 1 ) + + ( z 1 1 ) ( z 2 1 ) ( z 2 m 1 1 ) r = 1 2 m ( z r 1 ) E = \dfrac{(z_2-1)(z_3-1)\ldots(z_{2m}-1) + (z_1-1)(z_3-1)\ldots(z_{2m}-1) + \ldots + (z_1-1)(z_2-1)\ldots(z_{2m-1}-1)}{\displaystyle \prod_{r=1}^{2m} (z_r-1)}

E = ( 1 z 2 ) ( 1 z 3 ) ( 1 z 2 m ) + ( 1 z 1 ) ( 1 z 3 ) ( 1 z 2 m ) + + ( 1 z 1 ) ( 1 z 2 ) ( 1 z 2 m 1 ) r = 1 2 m ( 1 z r ) E = -\dfrac{(1-z_2)(1-z_3)\ldots(1-z_{2m}) + (1-z_1)(1-z_3)\ldots(1-z_{2m}) + \ldots + (1-z_1)(1-z_2)\ldots(1-z_{2m-1})}{\displaystyle \prod_{r=1}^{2m} (1-z_r)}

E = f ( 1 ) f ( 1 ) = ( 2 m ) ( 2 m + 1 ) 2 2 m + 1 = m E = -\dfrac{f’(1)}{f(1)} = -\dfrac{\frac{(2m)(2m+1)}{2}}{2m+1} = \boxed{-m}

We are going to find an equation with roots 1 z r 1 \dfrac{1}{z_r-1} , so let y = 1 z 1 y=\dfrac{1}{z-1} . Solving for z z we get z = y + 1 y z=\dfrac{y+1}{y} .

Substituting that, and multipliying everything by y 2 m y^{2m} we obtain:

( y + 1 ) 2 m + y ( y + 1 ) 2 m 1 + y 2 ( y + 1 ) 2 m 2 + + y 2 m 1 ( y + 1 ) + y 2 m = 0 (y+1)^{2m}+y(y+1)^{2m-1}+y^2(y+1)^{2m-2}+\cdots+y^{2m-1}(y+1)+y^{2m}=0

Now, by Vieta's formulas, the answer that we want is the sum of all roots of the equation above: coefficient of y 2 m 1 coefficient of y 2 m -\dfrac{\text{coefficient of } y^{2m-1}}{\text{coefficient of } y^{2m}}

The coefficient of y 2 m y^{2m} is 1 + 1 + + 1 (2m+1 times) = 2 m + 1 1+1+\cdots+1 \text{ (2m+1 times)}=2m+1 , and the coefficient of y 2 m 1 y^{2m-1} is 2 m + 2 m 1 + 2 m 2 + + 2 + 1 = 2 m ( 2 m + 1 ) 2 = m ( 2 m + 1 ) 2m+2m-1+2m-2+\cdots+2+1=\dfrac{2m(2m+1)}{2}=m(2m+1)

So, the answer is: m ( 2 m + 1 ) 2 m + 1 = m -\dfrac{m(2m+1)}{2m+1}=\boxed{-m}

Similar way.

Nice solution by the way.

Ashu Dablo - 5 years, 10 months ago
Maggie Miller
Aug 5, 2015

Note z 2 m + + z + 1 = z 2 m + 1 1 z 1 z^{2m}+\cdots+z+1=\frac{z^{2m+1}-1}{z-1} , so the z r z_r are the nontrivial ( 2 m + 1 ) (2m+1) -th roots of unity. Let x x be a primitive ( 2 m + 1 ) (2m+1) -th root of unity, so

r = 1 2 m 1 z r 1 = k = 1 2 m ( 1 x k 1 ) = k = 1 m ( 1 x k 1 + 1 x 2 m + 1 k 1 ) \displaystyle\sum_{r=1}^{2m}\frac{1}{z_r-1}=\sum_{k=1}^{2m}\left(\frac{1}{x^k-1}\right)=\sum_{k=1}^m\left(\frac{1}{x^k-1}+\frac{1}{x^{2m+1-k}-1}\right)

= k = 1 m ( 1 x k 1 + 1 x k 1 ) = k = 1 m x k 2 + x k x k + 2 x k \displaystyle=\sum_{k=1}^{m}\left(\frac{1}{x^k-1}+\frac{1}{x^{-k}-1}\right)=\sum_{k=1}^m \frac{x^{-k}-2+x^k}{-x^{-k}+2-x^k}

= k = 1 m ( 1 ) = m \displaystyle=\sum_{k=1}^m(-1)=\boxed{-m} .

what does it mean by a non trivial (2m+1)th root of unity?

avn bha - 5 years, 10 months ago

Log in to reply

e 2 π i k / ( 2 m + 1 ) e^{2\pi i k/(2m+1)} , where 1 k 2 m 1\le k\le 2m is an integer. Those are all the complex numbers z z that satisfy z 2 m + 1 = 1 z^{2m+1}=1 , except for 1 1 (the trivial one)

Maggie Miller - 5 years, 10 months ago

Log in to reply

ok i got that but what did you do in the second and third step i.e. how did you write zr as x^k

avn bha - 5 years, 10 months ago

Log in to reply

@Avn Bha So, let x x be e 2 π i / ( m + 1 ) e^{2\pi i/(m+1)} . Then x k = e 2 π i k / ( 2 m + 1 ) x^k=e^{2\pi i k/(2m+1)} , so { x , x 2 , , x 2 m } = { z 1 , z 2 , , z 2 m } \{x,x^2,\ldots,x^{2m}\}=\{z_1,z_2,\ldots,z_{2m}\}

Then I just used the fact that x 2 m + 1 = 1 x^{2m+1}=1 .

Maggie Miller - 5 years, 10 months ago

Log in to reply

@Maggie Miller sorry but just one last thing how did the last term become 1/{x^(2m+1-k)-1}

where did that k come from

avn bha - 5 years, 10 months ago

Log in to reply

@Avn Bha I just reordered the sum - so like if m were 3, i changed

1 x 1 + 1 x 2 1 + 1 x 3 1 + 1 x 4 1 + 1 x 5 1 + 1 x 6 1 \frac{1}{x-1}+\frac{1}{x^2-1}+\frac{1}{x^3-1}+\frac{1}{x^4-1}+\frac{1}{x^5-1}+\frac{1}{x^6-1} to

( 1 x 1 + 1 x 6 1 ) + ( 1 x 2 1 + 1 x 5 1 ) + ( 1 x 3 1 + 1 x 4 1 ) \left(\frac{1}{x-1}+\frac{1}{x^6-1}\right)+\left(\frac{1}{x^2-1}+\frac{1}{x^5-1}\right)+\left(\frac{1}{x^3-1}+\frac{1}{x^4-1}\right) ,

and then each sum in parentheses is 1 -1 , so you get 3 -3 .

Hope that helps

Maggie Miller - 5 years, 10 months ago

Log in to reply

@Maggie Miller thanks a lot !

avn bha - 5 years, 10 months ago
Xian Ng
Aug 6, 2015

This is a stupid solution but I used intuitive 'feeling' as I call it: since one possible root of unity is -1, I took it as the average value for each Zr, so we have sum from 1 to 2m of 1/(-1-1) = 2m*(-0.5) = -m

Unfortunately, averages do not work that way.

E [ 1 X ] 1 E [ X ] E[ \frac{1}{X} ] \neq \frac{1}{ E[X] }

Calvin Lin Staff - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...