Some Logs These Are!

Algebra Level 1

log y x + log x y = 2 \large\log_{\color{#20A900}{y}}{\color{#3D99F6}{x}}+\log_{\color{#3D99F6}{x}}{\color{#20A900}{y}}=-2 Find the value of x y . \color{#3D99F6}{x}\color{#20A900}{y}.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Tijmen Veltman
May 12, 2015

Let z : = log y x z:=\log_y x , then log x y = 1 z \log_x y=\frac1z and so z + 1 z = 2 z+\frac1z=-2 , giving us ( z + 1 ) 2 = 0 (z+1)^2=0 , hence z = 1 z=-1 . Therefore log y x = 1 \log_y x=-1 , meaning that y 1 = x y^{-1}=x . So we get x y = y 1 y = 1 xy=y^{-1}y=\boxed{1} .

Moderator note:

Simple and easy to understand! Bonus question: What is the range of real value of A A such that log y x + log x y = A \log_{y}{x}+\log_{x}{y}=A has real solutions for x , y x,y ?

Let z = log y x z = \log_{y}x

Use the quadratic formula on the equation z 2 A z + 1 = 0 z^{2} - Az +1 = 0 For real solution to this eq, range of real values A can take is R - (-2,2)

Yaşar Qamar - 6 years, 1 month ago

Log in to reply

The roots of the equation z 2 A z + 1 = 0 z^2-Az+1=0 , is given simply by the quadratic equation: b ± b 2 4 a c 2 a \frac{-b\pm\sqrt{b^2-4ac}}{2a} , where -A=b, a=1, and c=1 Implying that A ± 2 A \ge \pm2 ., such that the interval for the challenge master's note is [ , 2 ] [ 2 , ] [-\infty, -2] \cup [2, \infty] . A simple check with A=0, gives z = ± i z=\pm i , so it is not in the range [-2,2].

Scott Ripperda - 6 years ago

Log in to reply

The range of Real A is: Real Values minus the set (-2, 2) i.e. R-(-2,2). I did mention the same answer above. I hope this clarifies

Yaşar Qamar - 6 years ago

Log in to reply

@Yaşar Qamar Sorry I was slightly confused by the notation, as I figured R corresponded to to range. For future reference, R \mathbb{R} , is the correct notation for real numbers to avoid any future confusion. Anyways cool problem.

Scott Ripperda - 6 years ago

Log in to reply

@Scott Ripperda Thanks! :D

Omkar Kulkarni - 6 years ago

@Scott Ripperda My bad, Thanks for pointing that out. Cheers.

Yaşar Qamar - 6 years ago

there are xy amount.

Am Kemplin - 1 month, 2 weeks ago

I think the answer to the question in challenge master's note is R-(-2,2)

Archit Boobna - 6 years, 1 month ago

all real numbers?

Yeoj Parreño - 6 years, 1 month ago
Louis W
May 13, 2015

Using the Properties of Logarithms , log y x + log x y = 2 log x log y + log y log x = 2 \log_{y}{x}+\log_{x}{y}=-2 \color{#D61F06} \Rightarrow \color{#333333} \frac{\log_{}{x}}{\log_{}{y}}+\frac{\log_{}{y}}{\log_{}{x}}=-2 ( log x ) 2 + ( log y ) 2 log x log y = 2 ( log x ) 2 + ( log y ) 2 = 2 log x log y \color{#D61F06} \Rightarrow \color{#333333} \frac{(\log_{}{x})^{2}+(\log_{}{y})^{2}}{\log_{}{x}\log_{}{y}}=-2\color{#D61F06} \Rightarrow \color{#333333} (\log_{}{x})^{2}+(\log_{}{y})^{2}=-2\log_{}{x}\log_{}{y} ( log x ) 2 + 2 log x log y + ( log y ) 2 = 0 ( log x + log y ) 2 = 0 \color{#D61F06} \Rightarrow \color{#333333} (\log_{}{x})^{2}+2\log_{}{x}\log_{}{y}+(\log_{}{y})^{2}=0\color{#D61F06} \Rightarrow \color{#333333} (\log_{}{x}+\log_{}{y})^{2}=0 log x + log y = 0 log x = log y log x = log 1 y \color{#D61F06} \Rightarrow \color{#333333} \log_{}{x}+\log_{}{y}=0\color{#D61F06} \Rightarrow \color{#333333} \log_{}{x}=-\log_{}{y} \color{#D61F06} \Rightarrow \color{#333333} \log_{}{x}=\log_{}{\frac{1}{y}} a > 0 , a 1 : a x = a y x = y a>0, \space a \neq 1:\space\space\color{#D61F06} a^{x}=a^{y} \color{#333333} \Leftrightarrow \color{#D61F06} x=y 1 0 log x = 1 0 log 1 y x = 1 y \color{#D61F06} \Rightarrow \color{#333333} 10^{\log_{}{x}}=10^{\log_{}{\frac{1}{y}}} \color{#D61F06} \Rightarrow \color{#333333} x=\frac{1}{y} x y = 1 \color{#D61F06} \Rightarrow \color{#333333} xy=\color{#3D99F6}{1} \color{#333333} \space\space\space\Box

Great answer. Thank you.

Matthew Wroblewski - 6 years, 1 month ago

Excellent explanation thanx

Aryan Mehra - 6 years ago

nice explanation....thankx

Kranthi Prabhu - 5 years, 5 months ago

The simplest solution is always the best solution.

John Conway - 5 years, 3 months ago

Couldn't you just go from LaTeX: log x + log y = 0 log x = log y log x = log 1 y \color{#D61F06} \Rightarrow \color{#333333} \log_{}{x}+\log_{}{y}=0\color{#D61F06} \Rightarrow \color{#333333} \log_{}{x}=-\log_{}{y} \color{#D61F06} \Rightarrow \color{#333333} \log_{}{x}=\log_{}{\frac{1}{y}} to log(xy) = 0 then xy = 10^0 or xy = 1?

Teemo pan - 4 years ago

Log in to reply

That is another option, yes.

Louis W - 4 years ago
Dustin Moriarty
May 15, 2015

I like to take it step by step and apply the log rules.

Great explination.

Jeff Wallace - 6 years ago

Another very clear and methodical solution .

John Conway - 5 years, 3 months ago

they are Right

Shreyansh Tiwari - 4 years, 9 months ago
Aldo Muñoz
Feb 10, 2016

l o g y x + l o g x y = 2 l o g y x + l o g x y + l o g x x + l o g y y = 0 l o g x x y + l o g y x y = 0 l n x y l n x = l n x y l n y ( l n x + l n y ) l n x y = 0 Therefore x y = 1 log_y x + log_x y = -2 \\ \Rightarrow log_y x + log_x y + log_x x + log_y y = 0 \\ \Rightarrow log_x xy + log_y xy = 0 \\ \Rightarrow \frac{ln ~xy }{ln ~x} = - \frac{ln ~xy }{ln ~y} \\ \Rightarrow (ln ~x + ln ~y)ln ~xy = 0 \\ \mbox{Therefore} \ \ xy = 1

thanking you sir for your greatest explanation

TADDI SATISH (N170184) - 2 years, 5 months ago

super sir.....

TADDI SATISH (N170184) - 2 years, 5 months ago
Eugene Nierode
May 17, 2015

If we let y n = x y^n=x and x p = y x^p=y then we are told that p + n = 2 p+n=-2 . Multiplying these equations yields ( x y ) p + n = x y (xy)^{p+n}=xy . Substituting yields ( x y ) 2 = x y (xy)^{-2}=xy . The only value of x y xy for which this is satisfied is at x y = 1 xy=\boxed{1} .

Note: This solution is invalid if the problem was defined over complex numbers. Seeing as that is not the case, the solution holds.

In place of the dollar signs ($), what works here is \( and \). The first to open and the second to close.

Omkar Kulkarni - 6 years ago
Kevin Guo
Jan 1, 2017

Let l o g y x = a log_y x=a and l o g x y = b log_x y=b . This means that 1) y a = x y^a=x and 2) x b = y x^b=y . Substituting y a y^a into the second equation yields y a b = y 1 y^{ab}=y^1 , which shows that ab=1. Then, we define a= 1 b \frac{1}{b} . Substituting a into the original a+b equation, we get 1 b \frac{1}{b} + b = 2 +b=-2 . Multiplying b on both sides, knowing b cannot equal zero, b 2 + 2 b + 1 = 0 b^2+2b+1=0 which gives b = 1 b=-1 . Since that is true, x 1 = y x^{-1}=y , or 1 x = y \frac{1}{x}=y . This shows that x y = 1 xy=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...