Some Mistakes can give rise to problem

Calculus Level 5

2 e + 4 3 e 3 + 6 5 e 5 + = ? \large{\frac { 2 }{ e } +\frac { 4 }{ 3{ e }^{ 3 } } +\frac { 6 }{ 5{ e }^{ 5 } } + \cdots = \, ? }

Bonus :Generalize for

n = 1 m 2 n ( 2 n 1 ) e ( 2 n 1 ) \large{\sum _{ n=1 }^{ m }{ \frac { 2n }{ \left( 2n-1 \right) { e }^{ \left( 2n-1 \right) } } } }


The answer is 0.811.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Oct 29, 2015

n = 1 2 n ( 2 n 1 ) e ( 2 n 1 ) \large{\displaystyle \sum^{\infty}_{n=1}\frac{2n}{(2n-1)e^{(2n-1)}}}

= n = 1 ( 1 e 2 n 1 + 1 ( 2 n 1 ) e 2 n 1 ) \large{=\displaystyle \sum^{\infty}_{n=1} \left( \frac{1}{e^{2n-1}}+\frac{1}{(2n-1)e^{2n-1}} \right)}

1 e 1 1 e 2 + 1 e + 1 3 e 3 + 1 5 e 5 + . . . . \large{\frac{\frac{1}{e}}{1-\frac{1}{e^{2}}}+\frac{1}{e}+\frac{1}{3e^3}+\frac{1}{5e^5}+....}

we know

ln ( 1 + x ) = x x 2 2 + x 3 3 . . . . . . \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-......

1 2 ln ( 1 + x 1 x ) = x + x 3 3 + x 5 5 + . . . . . \large{\frac{1}{2}\ln \left(\frac{1+x}{1-x} \right)=x+\frac{x^3}{3}+\frac{x^5}{5}+.....}

The summation becomes

1 2 ln ( e + 1 e 1 ) + e e 2 1 = 0.811 \large{\frac{1}{2}\ln \left(\frac{e+1}{e-1} \right)+\frac{e}{e^2-1}=\boxed{0.811}}

Bonus question- Try yourself

Nice use of the infinite ln series there

Jun Arro Estrella - 5 years, 5 months ago

Cool solution!

Department 8 - 5 years, 7 months ago

Log in to reply

Hey buddy can uu post solution for the bonus question ,I am kinda stuck in 1 ( 2 n 1 ) e ( 2 n 1 ) \sum \frac {1}{(2n-1)e^{(2n-1)}}

Tanishq Varshney - 5 years, 7 months ago

Log in to reply

Well I will leave it to you as there will be a easier solution than mine (well, mine is very complex) but I will tell you the generalized result:-

( 2 e ( e 2 m + 1 e 2 m tanh 1 ( 1 e ) + e 2 m + 2 tanh 1 ( 1 e ) e ) ( e 2 1 ) Φ ( 1 e 2 , 1 , m + 1 2 ) ) \large{\left( 2e\left( { e }^{ 2m+1 }-{ e }^{ 2m }\tanh ^{ -1 }{ \left( \frac { 1 }{ e } \right) } +{ e }^{ 2m+2 }\tanh ^{ -1 }{ \left( \frac { 1 }{ e } \right) } -e \right) -\left( { e }^{ 2 }-1 \right) \Phi \left( \frac { 1 }{ { e }^{ 2 } } ,1,m+\frac { 1 }{ 2 } \right) \right) }

Where Φ ( x , y , z ) \Phi \left( x,y,z \right) is Lerch transcedent.

By the way try to solve my latest questions

Department 8 - 5 years, 7 months ago

Log in to reply

@Department 8 I didn't see that coming!!!

Tanishq Varshney - 5 years, 7 months ago

Log in to reply

@Tanishq Varshney I have posted it... see it coming?

Akul Agrawal - 5 years, 7 months ago
Akul Agrawal
Nov 4, 2015

T a k e a n i n f i n i t e G P 1 x , 1 x 3 , 1 x 5 , 1 x 7 . . . x > 1 W e c a n e a s i l y s e e t h a t x x 2 1 = 1 x + 1 x 3 + 1 x 5 + . . . 1 x 2 1 = 1 x 2 + 1 x 4 + 1 x 6 + . . . 0 e 1 x 2 1 d x = 0 e ( 1 x 2 + 1 x 4 + 1 x 6 + . . . ) d x 1 2 ln ( e + 1 e 1 ) = n = 1 1 ( 2 n 1 ) e 2 n 1 Take\quad an\quad infinite\quad GP\quad \frac { 1 }{ x } ,\frac { 1 }{ { x }^{ 3 } } ,\frac { 1 }{ { x }^{ 5 } } ,\frac { 1 }{ { x }^{ 7 } } ...\quad |x|>1\\ We\quad can\quad easily\quad see\quad that\\ \quad \quad \quad \quad \frac { x }{ { x }^{ 2 }-1 } \quad =\quad \frac { 1 }{ x } +\frac { 1 }{ { x }^{ 3 } } +\frac { 1 }{ { x }^{ 5 } } +...\\ \Rightarrow \quad \quad \quad \frac { 1 }{ { x }^{ 2 }-1 } =\quad \frac { 1 }{ { x }^{ 2 } } +\frac { 1 }{ { x }^{ 4 } } +\frac { 1 }{ { x }^{ 6 } } +...\\ \quad \int _{ 0 }^{ e }{ \frac { 1 }{ { x }^{ 2 }-1 } dx= } \int _{ 0 }^{ e }{ \left( \frac { 1 }{ { x }^{ 2 } } +\frac { 1 }{ { x }^{ 4 } } +\frac { 1 }{ { x }^{ 6 } } +... \right) dx } \\ \Rightarrow \frac { 1 }{ 2 } \ln { \left( \frac { e+1 }{ e-1 } \right) } =\quad \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ (2n-1){ e }^{ 2n-1 } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...