Some sum

n = 0 ( 4 n 2 n ) 2 5 n \large\sum_{n=0}^\infty \dfrac{\dbinom{4n}{2n}}{25^n}

If the above sum can be expressed in the form a b \sqrt{\dfrac{a}{b}} with a a and b b coprime positive integers, find a + b a+b .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jake Lai
Dec 11, 2015

Either by using Newton's generalised binomial theorem, or by differentiating the generating function for Catalan numbers, it can be shown that 1 1 4 u = n = 0 ( 2 n n ) u n \displaystyle \frac{1}{\sqrt{1-4u}} = \sum_{n=0}^\infty \binom{2n}{n}u^n .


Method 1 :

Note that n = 0 ( 4 n 2 n ) x 2 n = 1 2 [ n = 0 ( 2 n n ) x n + n = 0 ( 2 n n ) ( x ) n ] = 1 2 [ 1 1 4 x + 1 1 + 4 x ] \displaystyle \sum_{n=0}^\infty \binom{4n}{2n}x^{2n} = \frac{1}{2} \left[ \sum_{n=0}^\infty \binom{2n}{n}x^n + \sum_{n=0}^\infty \binom{2n}{n}(-x)^n \right] = \frac{1}{2} \left[ \frac{1}{\sqrt{1-4x}} + \frac{1}{\sqrt{1+4x}} \right] . Since in the given sum, x = 1 5 x = \dfrac{1}{5} , this gives us 1 2 [ 1 1 4 / 5 + 1 1 + 4 / 5 ] = 20 9 \displaystyle \frac{1}{2} \left[ \frac{1}{\sqrt{1-4/5}} + \frac{1}{\sqrt{1+4/5}} \right] = \boxed{\sqrt{\dfrac{20}{9}}} .


Method 2 :

To isolate the even terms, we can substitute u = i x u = ix and take the real part to get

n = 0 ( 4 n 2 n ) ( x 2 ) n = R e ( n = 0 ( 2 n n ) ( i x ) n ) = R e ( 1 1 4 i x ) . \sum_{n=0}^\infty \binom{4n}{2n}(-x^2)^n = \mathrm{Re} \left( \sum_{n=0}^\infty \binom{2n}{n}(ix)^n \right) = \mathrm{Re} \left( \frac{1}{\sqrt{1-4ix}} \right) .

If we let 1 1 4 i x = r e i θ \dfrac{1}{\sqrt{1-4ix}} = re^{i\theta} , then we have R e ( 1 1 4 i x ) = r cos θ \mathrm{Re} \left( \dfrac{1}{\sqrt{1-4ix}} \right) = r\cos \theta . 1 4 i x = e 2 i θ r 2 1-4ix = \dfrac{e^{-2i\theta}}{r^2} , so we have cos 2 θ = r 2 \cos 2\theta = r^2 and sin 2 θ = 4 r 2 x \sin 2\theta = 4r^2x . Hence, θ = 1 2 arctan 4 x \theta = \dfrac{1}{2} \arctan 4x and r = 1 1 + 16 x 2 4 r = \dfrac{1}{\sqrt[4]{1+16x^2}} .

Thus,

R e ( 1 1 4 i x ) = r cos θ = cos ( 1 2 arctan 4 x ) 1 + 16 x 2 4 = 1 + cos arctan 4 x 2 1 + 16 x 2 4 = 1 + 1 1 + 16 x 2 2 1 + 16 x 2 4 = 1 + 1 + 16 x 2 2 ( 1 + 16 x 2 ) . \begin{aligned} \mathrm{Re} \left( \frac{1}{\sqrt{1-4ix}} \right) &= r\cos \theta \\ &= \frac{\cos(\frac{1}{2} \arctan 4x)}{\sqrt[4]{1+16x^2}} \\ &= \frac{\sqrt{1+\cos \arctan 4x}}{\sqrt{2} \sqrt[4]{1+16x^2}} \\ &= \frac{\sqrt{1+\sqrt{\dfrac{1}{1+16x^2}}}}{\sqrt{2} \sqrt[4]{1+16x^2}} \\ &= \sqrt{\frac{1+\sqrt{1+16x^2}}{2(1+16x^2)}} . \end{aligned}

By replacing x 2 -x^2 with x x , we therefore have the result n = 0 ( 4 n 2 n ) x n = 1 + 1 16 x 2 ( 1 16 x ) \displaystyle \sum_{n=0}^\infty \binom{4n}{2n}x^n = \sqrt{\frac{1+\sqrt{1-16x}}{2(1-16x)}} . Since in our given sum x = 1 25 x = \dfrac{1}{25} , as a result we have

n = 0 ( 4 n 2 n ) 2 5 n = 1 + 1 16 / 25 2 ( 1 16 / 25 ) = 20 9 . \sum_{n=0}^\infty \frac{\binom{4n}{2n}}{25^n} = \sqrt{\frac{1+\sqrt{1-16/25}}{2(1-16/25)}} = \boxed{\sqrt{\dfrac{20}{9}}} .

20 + 9 = 29 7 20 + 9 = 29 \ne 7

Pi Han Goh - 5 years, 6 months ago

Log in to reply

wait a second I am getting 59 because answer is 2 ( 5 ) 3 \dfrac{2*\sqrt(5)}{3} . Click here .

Department 8 - 5 years, 6 months ago

Log in to reply

How would you get 59? 2 5 / 3 = 20 / 9 2\sqrt{5}/3 = \sqrt{20/9} .

Jake Lai - 5 years, 6 months ago

Log in to reply

@Jake Lai You know I am stupid

Department 8 - 5 years, 6 months ago

Log in to reply

@Department 8 We all make mistakes, hahaha. I've done worse!

Jake Lai - 5 years, 6 months ago

Yeah I've reported the question. Miscalculated the answer.

Jake Lai - 5 years, 6 months ago

Log in to reply

what is the right answer? mine or yours? Just asking

Department 8 - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...