Spicy Limits and Integrals!

Calculus Level 4

{ Ω 1 = 0 1 sin 1 ( x 1 + x 2 ) d x Ω 2 = 0 1 cos 1 ( x 1 + x 2 ) d x Ω 3 = lim n ( 1 n + 1 + 1 n + 2 + + 1 2 n ) \begin{cases} \Omega_1 = \displaystyle \int_0^1 \sin^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x \\ \Omega_2 = \displaystyle \int_0^1 \cos^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x \\ \Omega_3 = \displaystyle \lim_{n \to \infty} \left( \dfrac{1}{n+1} + \dfrac{1}{n+2} + \ldots + \dfrac{1}{2n} \right) \end{cases}

Define Ω 1 , Ω 2 , Ω 3 \Omega_1, \Omega_2, \Omega_3 as of above. Then which one of the following choices is correct?

Ω 1 + Ω 2 = Ω 3 \Omega_1 + \Omega_2 = \Omega_3 Ω 2 + Ω 3 = Ω 1 \Omega_2 + \Omega_3 = \Omega_1 Ω 1 + Ω 3 = Ω 2 \Omega_1 + \Omega_3 = \Omega_2 Ω 1 + Ω 2 + Ω 3 = ln ( 2 ) \Omega_1 + \Omega_2 + \Omega_3 = \ln(2) Ω 1 + Ω 2 + Ω 3 = 4 \Omega_1 + \Omega_2 + \Omega_3 = 4 Ω 1 + Ω 2 + Ω 3 = 1 \Omega_1 + \Omega_2 + \Omega_3 = 1 Ω 1 + Ω 2 + Ω 3 = ln ( 4 ) \Omega_1 + \Omega_2 + \Omega_3 = \ln(4) Ω 1 + Ω 2 + Ω 3 = 0 \Omega_1 + \Omega_2 + \Omega_3 = 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Sep 10, 2015

Consider the following three facts :

{ Ω 1 + Ω 2 = π 2 ( 1 ) Ω 3 = ln 2 ( 2 ) Ω 2 Ω 1 0 ( 3 ) \begin{cases} \Omega_1 + \Omega_2 = \frac{\pi}{2} \;\;\;\;\;\;\;\; (1) \\ \Omega_3 = \ln 2 \;\;\;\;\;\;\;\;\;\;\;\;\; (2) \\ \Omega_2 - \Omega_1 \geq 0 \;\;\;\;\;\;\;\; (3) \end{cases}

P r o o f o f ( 1 ) : \bullet \mathbf{\;Proof \; of \; (1) \; :}

Ω 1 + Ω 2 = 0 1 sin 1 ( x 1 + x 2 ) d x + 0 1 cos 1 ( x 1 + x 2 ) d x \displaystyle \Omega_1 + \Omega_2 = \int_0^1 \sin^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x + \int_0^1 \cos^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x

= 0 1 sin 1 ( x 1 + x 2 ) + cos 1 ( x 1 + x 2 ) d x = 0 1 π 2 d x = π 2 \displaystyle = \int_0^1 \sin^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) + \cos^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x = \int_0^1 \frac{\pi}{2} \mathrm{d}x = \frac{\pi}{2}

P r o o f o f ( 2 ) : \bullet \mathbf{\;Proof \; of \; (2) \; :}

Ω 3 = lim n ( 1 n + 1 + 1 n + 2 + + 1 2 n ) = lim n k = 1 n 1 n + k = lim n 1 n k = 1 n 1 1 + k n \displaystyle \Omega_3 = \lim_{n \to \infty} \left( \dfrac{1}{n+1} + \dfrac{1}{n+2} + \ldots + \dfrac{1}{2n} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \dfrac{1}{n+k} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \dfrac{1}{1+\frac{k}{n}}

= 0 1 d x 1 + x = ln 2 \displaystyle = \int_0^1 \frac{dx}{1+x} = \ln 2

P r o o f o f ( 3 ) : \bullet \mathbf{\;Proof \; of \; (3) \; :}

Using the facts that sin 1 ( x 1 + x 2 ) \sin^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) is increasing and cos 1 ( x 1 + x 2 ) \cos^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) is decreasing, and considering the integration limits of Ω 1 and Ω 2 \Omega_1 \; \text{and} \; \Omega_2 , we can bound the integrand of Ω 1 \Omega_1 in [ 0 , π 4 ] [0,\frac{\pi}{4}] and the integrand of Ω 2 \Omega_2 in [ π 4 , π 2 ] [\frac{\pi}{4},\frac{\pi}{2}] . Therefore:

Ω 2 Ω 1 0 \displaystyle \Omega_2 - \Omega_1 \geq 0

Hence our facts are proved. We know that only one of the given 8 8 choices should be correct.

Using facts ( 1 ) (1) and ( 2 ) (2) , we can conclude that Ω 1 + Ω 2 + Ω 3 = π 2 + ln 2 and Ω 1 + Ω 2 Ω 3 \Omega_1 +\Omega_2+\Omega_3 = \frac{\pi}{2} + \ln 2 \; \text{and} \; \Omega_1 +\Omega_2 \neq \Omega_3 ,

which eliminates 6 6 choices .

The remaining 2 2 choices say that either :

Ω 3 = Ω 2 Ω 1 or Ω 3 = Ω 1 Ω 2 \displaystyle \Omega_3 = \Omega_2 - \Omega_1 \; \text{or} \; \Omega_3 =\Omega_1 - \Omega_2

But since Ω 3 > 0 \Omega_3 >0 and using fact ( 3 ) (3) , we are left with Ω 3 = Ω 2 Ω 1 \Omega_3 = \Omega_2 - \Omega_1 .

So the correct answer is:

Ω 1 + Ω 3 = Ω 2 \displaystyle \boxed{\Omega_1 + \Omega_3 = \Omega_2 }

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............................................................

For Clarity, I will solve one of the integrals; Just basic integration techniques :

Ω 1 = 0 1 sin 1 ( x 1 + x 2 ) d x \displaystyle \Omega_1 = \int_0^1 \sin^{-1} \left( \dfrac{x}{\sqrt{1+x^2}} \right) \mathrm{d}x

= x tan u 0 π 4 u sec 2 u d u \displaystyle \overset{{\color{#D61F06}{ x \to \tan u }}}{=} \int_0^{\frac{\pi}{4}} u\sec^2u du

= Integration By Parts u tan u 0 π 4 0 π 4 tan u d u \displaystyle \overset{{\color{#D61F06}{ \text{Integration By Parts} }}}{=} u\tan u |_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \tan u du

= ( u tan u ln sec u ) 0 π 4 = π 4 1 2 ln 2 \displaystyle = (u\tan u - \ln \sec u ) |_0^{\frac{\pi}{4}} = \frac{\pi}{4} - \frac{1}{2} \ln 2

Using this result and fact ( 1 ) (1) , we can find Ω 2 Ω 1 \Omega_2 - \Omega_1 and assure the correct answer.

Thanks, Elegant Solution \textit{Elegant Solution}

Akhil Bansal - 5 years, 9 months ago

Log in to reply

@Hasan Kassim can you show that Ω 2 Ω 1 = ln ( 2 ) \Omega_2 - \Omega_1 = \ln(2) in your solution for clarity?

Satyajit Mohanty - 5 years, 9 months ago

Log in to reply

Yea, please show that...Cuz according to my solution, The terms do not come to be equal... Thanks!

A Former Brilliant Member - 5 years, 9 months ago

Log in to reply

@A Former Brilliant Member Well @Abhineet Nayyar It is true that Ω 2 Ω 1 = ln ( 2 ) \Omega_2 - \Omega_1 = \ln(2) and so is Ω 3 = ln ( 2 ) \Omega_3 = \ln(2) .

Satyajit Mohanty - 5 years, 9 months ago

@Satyajit Mohanty @Abhineet Nayyar

I have edited the solution.

Hasan Kassim - 5 years, 9 months ago

Log in to reply

Thanks for the solution!!:)

A Former Brilliant Member - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...