Square Roots in a Function!

Algebra Level 4

f ( 13 ) + f ( 14 ) + f ( 15 ) + f ( 16 ) + + f ( 112 ) \begin{aligned} f(13) + f(14) + f(15) + f(16) + \cdots + f(112) \end{aligned}

Given that f f is a real function such that f ( n ) = 4 n + 4 n ² 1 2 n + 1 + 2 n 1 f(n) = \dfrac{4n + \sqrt{4n²-1}}{ \sqrt{2n+1} + \sqrt{2n-1}} for n n real positive integer. Find the value of the expression above.


Try another problem on my set, Let's Practice


The answer is 1625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 4, 2017

f ( n ) = ( 2 n + 1 ) + ( 2 n 1 ) + ( 2 n + 1 ) ( 2 n 1 ) 2 n + 1 + 2 n 1 f(n) = \dfrac{(2n+1)+(2n-1) + \sqrt{(2n+1)(2n-1)}}{ \sqrt{2n+1} + \sqrt{2n-1}}

( Put p = 2 n + 1 , q = 2 n 1 ) \left(\small{\text{Put }p=\sqrt{2n+1},q=\sqrt{2n-1}}\right)

= p 2 + q 2 + p q p + q × p q p q = p 3 q 3 p 2 q 2 = ( 2 n + 1 ) 3 ( 2 n 1 ) 3 2 =\dfrac{p^2+q^2+pq}{p+q}\times\dfrac{p-q}{p-q}=\dfrac{p^3-q^3}{p^2-q^2}=\dfrac{\sqrt{(2n+1)^3}-\sqrt{(2n-1)^3}}{2}

Hence sum is:

n = 13 112 [ ( 2 n + 1 ) 3 ( 2 n 1 ) 3 2 ] \sum_{n=13}^{112}\left[ \dfrac{\sqrt{(2n+1)^3}-\sqrt{(2n-1)^3}}{2}\right]

(A Telescopic Series) \small{\color{#20A900}{\text{(A Telescopic Series)}}}

= ( 2 ( 112 ) + 1 ) 3 ( 2 ( 13 ) 1 ) 3 2 = 1 5 3 5 3 2 = 1625 =\dfrac{\sqrt{(2(112)+1)^3}-\sqrt{(2(13)-1)^3}}2=\dfrac{15^3-5^3}{2}=\boxed{1625}

Your solution is much better than mine. Nice work.

Fidel Simanjuntak - 4 years, 5 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 5 months ago

Log in to reply

Do you enjoy solving my problem on this set?

Fidel Simanjuntak - 4 years, 5 months ago

Log in to reply

@Fidel Simanjuntak Yes... They are very involving... Are these created by you??

Rishabh Jain - 4 years, 5 months ago

Log in to reply

@Rishabh Jain I just got some inspirations, then i developed it into a great problem.. Hehe

Fidel Simanjuntak - 4 years, 5 months ago

Log in to reply

@Fidel Simanjuntak Nice... :-) keep posting

Rishabh Jain - 4 years, 5 months ago

Log in to reply

@Rishabh Jain Okay. Keep solving.. XD

Fidel Simanjuntak - 4 years, 5 months ago

Your set is too awesome. currently i have solved 15 of them!

Prakhar Bindal - 4 years, 5 months ago

Log in to reply

Thank you. Just keep solving..

Fidel Simanjuntak - 4 years, 5 months ago

First, let's rationalize the function.

f ( n ) = ( 4 n + 4 n ² 1 ) ( 2 n + 1 2 n 1 ) ( 2 n + 1 + 2 n 1 ) ( 2 n + 1 2 n 1 ) f(n) = \frac{(4n + \sqrt{4n²-1})(\sqrt{2n+1} - \sqrt{2n-1})}{(\sqrt{2n+1} + \sqrt{2n-1})(\sqrt{2n+1} - \sqrt{2n-1})}

f ( n ) = ( 4 n + 4 n ² 1 ) ( 2 n + 1 2 n 1 ) 2 f(n) = \frac{(4n + \sqrt{4n²-1})(\sqrt{2n+1} - \sqrt{2n-1})}{2}

Let a = 2 n + 1 a= 2n +1 and b = 2 n 1 b= 2n-1 , we know a + b = 4 b a+b = 4b and a b = 4 n ² 1 ab = 4n² -1 .

f ( n ) = ( ( a + b ) + a b ) ( a b ) 2 f(n) = \frac{\left( (a+b) + \sqrt{ab} \right)(\sqrt{a} - \sqrt{b})}{2}

= a a + b a a b b b + a b b a 2 = \frac{a\sqrt{a} + \cancel{b\sqrt{a}} - \cancel{a\sqrt{b}} - b\sqrt{b} + \cancel{a\sqrt{b}} - \cancel{b\sqrt{a}}}{2}

= a a b b 2 = \frac{a\sqrt{a} - b\sqrt{b}}{2}

f ( n ) = 1 2 [ ( 2 n + 1 ) 2 n + 1 ( 2 n 1 ) 2 n 1 ] f(n) = \frac{1}{2} \left[ (2n+1)\sqrt{2n+1} - (2n-1)\sqrt{2n-1} \right] .

Now,

f ( 13 ) = 1 2 [ 27 27 25 25 ] f(13) = \frac{1}{2} \left[ \cancel{27\sqrt{27}} - 25\sqrt{25} \right]

f ( 14 ) = 1 2 [ 29 29 27 27 ] f(14) = \frac{1}{2} \left[ \cancel{29\sqrt{29}} - \cancel{27\sqrt{27}} \right]

f ( 15 ) = 1 2 [ 31 31 29 29 ] f(15) = \frac{1}{2} \left[ \cancel{31\sqrt{31}} - \cancel{29\sqrt{29}} \right]

\cdot \cdot \cdot \cdot \cdot \cdot

f ( 112 ) = 1 2 [ 225 225 223 223 ] f(112) = \frac{1}{2} \left[ 225\sqrt{225} - \cancel{223\sqrt{223}} \right] .

Simplify, we have

f ( 13 ) + f ( 14 ) + f ( 15 ) + . . . + f ( 112 ) = 1 2 [ 225 225 25 25 ] f(13) + f(14) + f(15) + ... + f(112) = \frac{1}{2} \left[ 225\sqrt{225} - 25\sqrt{25}\right]

f ( 13 ) + f ( 14 ) + f ( 15 ) + . . . + f ( 112 ) = 1 2 ( 5 ³ ) ( 27 1 ) = 125 × 13 = 1625 f(13) + f(14) + f(15) + ... + f(112) = \frac{1}{2}\left(5³\right)\left(27-1\right) = 125 \times 13 = \boxed{1625}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...