Can we compare them?

Algebra Level 1

12 27 6 × 3 × 4 = ? \large \frac{\sqrt{12}-\sqrt{27}}{6}\times\sqrt{3}\times\sqrt{4}= \ ?


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

15 solutions

Chew-Seong Cheong
Dec 30, 2014

12 27 6 × 3 × 4 = ( 2 3 3 3 ) 3 2 6 = ( 3 ) 3 3 = 3 3 = 1 \begin{aligned} \frac {\sqrt{12}-\sqrt{27}} {6} \times \sqrt{3}\times \sqrt{4} & = \frac {(2\sqrt{3}-3\sqrt{3})\sqrt{3}\cdot{}2} {6} \\ & = \frac {(-\sqrt{3})\sqrt{3}} {3} \\ & = \frac {-3}{3} \\ & = \boxed{-1} \end{aligned}

The final answer is -1 You wrote 1 but -3/3=-1

Laura Qi - 5 years, 7 months ago

Log in to reply

Thanks. A typo.

Chew-Seong Cheong - 5 years, 7 months ago

I have very limited mathmatical knowledge. How did you reduce the original question. I understand the why, but not how

Jamie Broomfield - 5 years, 6 months ago

Log in to reply

12 = 4 × 3 = 2 3 \sqrt{12}=\sqrt{4\times 3} = 2\sqrt{3} . Likewise 27 = 3 3 \sqrt{27}=3\sqrt{3} .

Chew-Seong Cheong - 5 years, 6 months ago

In you're second step what really happened? because I thought when simplyfied step 2 should equal to root 3 minus 3 root 3 times root 3 divided by 3???

Leinad World - 4 years, 12 months ago

Log in to reply

( 2 3 3 3 ) 3 2 6 = ( 3 ) 3 3 \begin{aligned} \frac {\color{#3D99F6}{(2\sqrt{3}-3\sqrt{3})}\sqrt{3}\cdot \color{#D61F06}2} {\color{#D61F06}6} = \frac {\color{#3D99F6}{(-\sqrt{3})}\sqrt{3}} {\color{#D61F06}3} \end{aligned}

Chew-Seong Cheong - 4 years, 12 months ago

That's exactly the same way I solved it !

Ishan Maheshwari - 4 years, 10 months ago

I don't know why I can't submit my answer....just shows that give an integer..! What can I do?

Anik Saha - 4 years, 6 months ago

Log in to reply

Just make sure you enter an integer without decimal. I have not experienced such problem.

Chew-Seong Cheong - 4 years, 6 months ago

This is wrong since √4 = ±2 So the answer is: -(±1) = ∓ 1

Anirban Chakraborty - 5 years, 5 months ago

Log in to reply

No, x 0 \sqrt{x} \ge 0 for real value x 0 x \ge 0 if not then 12 = ± 2 3 \sqrt{12} = \pm 2 \sqrt{3} , 3 = ± 1.732... = ± 3 \sqrt{3} = \pm 1.732... = \pm \sqrt{3} . But 3 3 \sqrt{3} \ne -\sqrt{3} .

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

Why are you allowed to extend the numerator? Originally, it was only under the root 12 and root 27, but then you extended it under the root 3 and root 4? Are you allowed to do that? My brain must be fuzzy.

Tyler Cade Richardson - 5 years, 2 months ago

Log in to reply

@Tyler Cade Richardson 12 = 4 × 3 = 2 3 \sqrt{12}=\sqrt{4\times 3} = 2\sqrt{3} . Likewise 27 = 3 3 \sqrt{27}=3\sqrt{3} .

Chew-Seong Cheong - 5 years, 1 month ago

x 2 = ± x \sqrt{x}^2=\pm x , So 3 × 3 = ± 3 \sqrt{3}\times \sqrt{3}=\pm 3 , which leads to ± 1 \pm 1 as the answer.

Ciprian Coca - 5 years, 1 month ago

Log in to reply

@Ciprian Coca No, x 0 \sqrt{x} \ge 0 for real value x 0 x \ge 0 if not then 12 = ± 2 3 \sqrt{12} = \pm 2 \sqrt{3} , 3 = ± 1.732... = ± 3 \sqrt{3} = \pm 1.732... = \pm \sqrt{3} . But 3 3 \sqrt{3} \ne -\sqrt{3} .

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

@Chew-Seong Cheong But why do we assume that sqrt of a given number is its principal(positive) one? Are we given any parameters or limits that imply this?

Tyvon O - Addo - 5 years ago

Log in to reply

@Tyvon O - Addo x = f ( x ) \sqrt{x} = f(x) is a function of x x , a f ( x ) f(x) has only one unique value. Therefore, x \sqrt{x} has only one value. When we have x 2 = 3 x^2=3 , we said that x = ± 3 x = \pm \sqrt{3} , that is because, we don't know before hand if x x is positive or negative and therefore, both 3 \sqrt{3} and 3 -\sqrt{3} can be x x . But when we use x \sqrt{x} it means that it is 0 \ge 0 .

Chew-Seong Cheong - 5 years ago
Richard Wong
Aug 20, 2014

12 27 6 × 3 × 4 \frac{\sqrt{12}-\sqrt{27}}{6}\times\sqrt{3}\times\sqrt{4}

= 3 ( 4 9 ) 6 × 3 × 4 = \frac{\sqrt{3}(\sqrt{4}-\sqrt{9})}{6}\times\sqrt{3}\times\sqrt{4}

= 4 9 6 × 3 × 2 = \frac{\sqrt{4}-\sqrt{9}}{6}\times3\times2

= 4 9 6 × 6 = \frac{\sqrt{4}-\sqrt{9}}{6}\times6

= 4 9 = 2 3 = 1 = \sqrt{4}-\sqrt{9} = 2-3 = \boxed{-1}

Brilliant approach! Good work!

Shashidhar Muniswamy - 5 years, 7 months ago

This was the best explanation

William Cummings - 5 years, 5 months ago

Great approach!

Refath Bari - 4 years, 11 months ago

{[(Sqrt 12)-(Sqrt 27)]/6} (Sqrt 3) (Sqrt 12)=[12-(Sqrt 324)]/6=(12-18)/6=-6/6=-1. Answer -1.

Cindy Smith - 1 year ago
Daniel Lim
Aug 2, 2014

12 27 6 × 3 × 4 \dfrac{\sqrt{12}-\sqrt{27}}{6}\times\sqrt{3}\times\sqrt{4}

First we turn them all into radical form,

( 12 36 27 36 ) × 12 \left(\sqrt{\dfrac{12}{36}}-\sqrt{\dfrac{27}{36}}\right)\times\sqrt{12}

= 144 36 324 36 =\sqrt{\frac{144}{36}}-\sqrt{\frac{324}{36}}

= 4 9 =\sqrt{4}-\sqrt{9}

= 2 3 =2-3

= 1 =\boxed{-1}

Under what assumption you took sqrt(4)=2? sqrt(4) = 2 or -2. Same applicable for sqrt(9)!

Mahabubul Islam - 5 years, 7 months ago

Log in to reply

No, the radical sign (√) denotes only the principal square root, which is always positive. So while 4 has two square roots, +2 and -2, √4 = 2. Indeed, a = ±√(a^2), because √(a^2) = |a|

Paul Alberti-Strait - 5 years, 7 months ago
Wenn Chuaan Lim
Aug 2, 2014

1 2 2 7 6 × 3 × 4 \frac{\sqrt12-\sqrt27}{6}\times\sqrt3\times\sqrt4
= 2 3 3 3 3 6 × 3 × 4 =\frac{2\sqrt3-3\sqrt3}{\sqrt36}\times\sqrt3\times\sqrt4
= 3 2 × 3 × 3 × 3 × 2 =\frac{-\sqrt3}{2\times\sqrt3\times\sqrt3}\times\sqrt3\times2
= 1 =\boxed{-1}


Aaron Luke
Aug 3, 2014

3 4 3 9 6 × 3 × 4 \frac { \sqrt { 3 } \cdot \sqrt { 4 } -\sqrt { 3 } \cdot \sqrt { 9 } }{ 6 } \quad \times \quad \sqrt { 3 } \quad \times \sqrt { 4 }

= 3 ( 3 2 3 3 ) 6 × 2 =\frac { \sqrt { 3 } (\sqrt { 3 } \cdot 2-\sqrt { 3 } \cdot 3) }{ 6 } \quad \quad \times \quad 2

= ( ( 3 2 ) ( 3 3 ) ) 6 × 2 =\frac { ((3\cdot 2)-(3\cdot 3)) }{ 6 } \quad \quad \times \quad 2

= 6 9 3 = 1 =\frac { 6-9 }{ 3 } \quad =\quad -1

sqrt{4} = 2 or -2. Under what assumption you took sqrt{4} = 2 only?

Mahabubul Islam - 5 years, 7 months ago
Cody Johnson
Aug 5, 2014

hello see this java code:

public class IAmBrilliant {
 public static void main(String[] args){
  System.out.println((Math.sqrt(12)-Math.sqrt(27))/6*Math.sqrt(3)*Math.sqrt(4));
 }
}

it outputs:

-1.0

anyone know how to do it using math?

Hassan Raza
Aug 3, 2014

12 27 6 × 3 × 4 = 2 3 3 3 6 × 2 3 = ( 2 3 ) 3 6 × 2 3 = 3 6 × 2 3 = 2 ( 3 ) 6 3 × 3 = 3 = 6 6 = 1 \qquad \frac { \sqrt { 12 } -\sqrt { 27 } }{ 6 } \times \sqrt { 3 } \times \sqrt { 4 } \\ =\quad \quad \frac { 2\sqrt { 3 } -3\sqrt { 3 } }{ 6 } \times 2\sqrt { 3 } \\ =\quad \quad \frac { (2-3)\sqrt { 3 } }{ 6 } \times 2\sqrt { 3 } \\ =\quad \quad \frac { -\sqrt { 3 } }{ 6 } \times 2\sqrt { 3 } \\ =\quad \quad \frac { -2(3) }{ 6 } \qquad \qquad \because \sqrt { 3 } \times \sqrt { 3 } =3\\ =\quad \quad \frac { -6 }{ 6 } \quad =\quad \boxed { -1 }

Seán Vaeth
Aug 22, 2015

1. 12 27 6 × 3 × 4 G i v e n 1. \frac{\sqrt{12} - \sqrt{27}}{6} \times \sqrt{3} \times \sqrt{4} - Given 2. = 4 × 3 9 × 3 6 × 3 × 2 B r e a k R a d i c a l s I n t o S q u a r e s 2. =\frac{\sqrt{4 \times 3} - \sqrt{9 \times 3}}{6}\times\sqrt{3} \times 2 -Break Radicals Into Squares 3. = 4 × 3 9 × 3 6 × 2 3 S i m p l i f y R a d i c a l s 3. = \frac{\sqrt{4}\times\sqrt{3} - \sqrt{9}\times\sqrt{3}}{6}\times2\sqrt{3} - Simplify Radicals
4. = 2 3 3 3 6 × 2 3 S i m p l y R a d i c a l s 4. =\frac{2\sqrt{3} - 3\sqrt{3}}{6}\times 2\sqrt{3} - Simply Radicals 5. = 1 3 6 × 2 3 1 C o m b i n e L i k e T e r m s 5. =\frac{-1\sqrt{3}}{6}\times\frac{2\sqrt{3}}{1} - Combine Like Terms 6. = 1 3 × 2 3 6 M u l t i p l y F r a c t i o n s 6. =\frac{-1\sqrt{3}\times2 \sqrt{3}}{6} - Multiply Fractions 7. = 1 × 2 × 3 × 3 6 C o m m u t a t i v e P r o p e r t y 7. =\frac{-1\times2\times\sqrt{3}\times \sqrt{3}}{6} - Commutative Property
8. = 2 × 3 6 = 6 6 = 1 S i m p l i f y 8. =\frac{-2\times 3}{6} = \frac{-6}{6} = \boxed{-1} -Simplify

Ahmed Obaiedallah
May 22, 2015

12 27 6 × 3 × 4 \frac {\sqrt{12}-\sqrt{27}}{6} \times \sqrt{3} \times \sqrt{4}

= 3 × 4 3 × 9 2 × 3 × 3 × 2 \frac {\sqrt{3 \times 4}-\sqrt{3 \times 9}}{2 \times 3} \times \sqrt{3} \times 2

= 2 3 3 3 3 × 3 \frac {2\sqrt{3}-3\sqrt{3}}{3} \times \sqrt{3}

= 3 3 × 3 -\frac {\sqrt{3}}{3} \times \sqrt{3}

= 3 3 = 1 -\frac {3}{3}=\boxed {-1}

Akhash Raja Raam
Oct 31, 2015

It's simple guys. Just convert all roots to whole numbers(i.e √4 = 2) and then convert 6 to corresponding roots. Then you'll just need to use some sense to simplify the answer.( I am a 10th grader and did this sum in 20 secs)

Bob Joe
Apr 25, 2016

12 = 2 3 \sqrt{12} = 2 \sqrt{3}

27 = 3 3 \sqrt{27} = 3 \sqrt{3}

2 3 3 3 = 1 3 2\sqrt3 - 3\sqrt3 = -1\sqrt{3}

3 × 4 = 12 = 2 3 \sqrt{3} \times \sqrt{4} = \sqrt{12} = 2\sqrt{3}

2 3 6 = 3 3 \frac{ 2 \sqrt{3} } {6} = \frac{\sqrt{3}}{3}

3 3 × 1 3 = 3 3 = 1 \frac{\sqrt{3}}{3} \times -1\sqrt{3} = \frac{-3}{3} = -1

Hi Bob, to write a formula in Latex, enclose your formula inside \ ( \ ) \backslash( \quad \quad \backslash ) .

I have edited your solution to make your math look beautiful. You can press the "edit" button to see its code.

Pranshu Gaba - 5 years, 1 month ago
Ayushmaan Sharma
Apr 21, 2016

There is no need of solution its a basic concept which only need a little focus

R3D One
Mar 28, 2016

((√12 - √27) / 6 ) x √3 x √4 = ( (2√3-3√3) x √3x2 ) / 6 = ( 4√9 - 6√9 ) / 6 = (4x3 - 6x3)/ 6 = ( 12 - 18 ) / 6 = -6 /6 = -1

Alessio Popovic
Feb 24, 2016

Its amazing how many different ways there are to solve this problem. And this is the reason why math is such a beautiful subject.

Gia Hoàng Phạm
Sep 22, 2018

12 27 6 × 3 × 4 = 12 × 12 ( 2 3 3 3 ) 6 = 12 × 3 6 = 36 6 = 6 6 = 1 \frac{\sqrt{12}-\sqrt{27}}{6} \times \sqrt{3} \times \sqrt{4}=\sqrt{12} \times \frac{\sqrt{12}(2\sqrt{3}-3\sqrt{3})}{6}=\frac{\sqrt{12} \times -\sqrt{3}}{6}=\frac{-\sqrt{36}}{6}=\frac{-6}{6}=\boxed{\large{-1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...