Square Summation

Algebra Level 2

Evaluate: 3 2 + 1 3 2 1 + 5 2 + 1 5 2 1 + 7 2 + 1 7 2 1 + + 9 9 2 + 1 9 9 2 1 . \large\dfrac{3^2+1}{3^2-1}+\dfrac{5^2+1}{5^2-1}+\dfrac{7^2+1}{7^2-1}+\cdots+\dfrac{99^2+1}{99^2-1}.

Note that 3 , 5 , 7 , , 99 3,5,7,\ldots,99 follows an arithmetic progression .


The answer is 49.49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Chew-Seong Cheong
Aug 27, 2015

This solution uses Partial Fractions - Linear Factors

Let S S be the summation, therefore,

S = 3 2 + 1 3 2 1 + 5 2 + 1 5 2 1 + 7 2 + 1 7 2 1 + . . . + 9 9 2 + 1 9 9 2 1 = k = 1 49 ( 2 k + 1 ) 2 + 1 ( 2 k + 1 ) 2 1 (Writing in summation notation) = k = 1 49 ( 1 + 2 ( 2 k + 1 ) 2 1 ) = k = 1 49 ( 1 + 2 [ ( 2 k + 1 ) 1 ] [ ( 2 k + 1 ) + 1 ] ) = k = 1 49 ( 1 + 2 4 k ( k + 1 ) ) = k = 1 49 ( 1 + 1 2 [ 1 k 1 k + 1 ] ) (Using Partial Fractions) = k = 1 49 1 + 1 2 ( k = 1 49 1 k k = 2 50 1 k ) = 49 + 1 2 ( 1 1 1 50 ) = 49.49 \begin{aligned} S & = \frac{3^2+1}{3^2-1} + \frac{5^2+1}{5^2-1} + \frac{7^2+1}{7^2-1} + ... + \frac{99^2+1}{99^2-1} \\ & = \sum_{k=1}^{49} \frac{(2k+1)^2+1}{(2k+1)^2-1} \hspace{.4cm} \text{ (Writing in summation notation)} \\ & = \sum_{k=1}^{49} \left( 1 + \frac{2}{(2k+1)^2-1} \right) \\ & = \sum_{k=1}^{49} \left( 1 + \frac{2}{[(2k+1)-1][(2k+1)+1]} \right) \\ & = \sum_{k=1}^{49} \left( 1 + \frac{2}{4k(k+1)} \right) \\ & = \sum_{k=1}^{49} \left( 1 + \frac{1}{2}\left[\frac{1}{k} - \frac{1}{k+1} \right] \right) \hspace{.4cm} \text{ (Using Partial Fractions)} \\ & = \sum_{k=1}^{49} 1 + \frac{1}{2} \left( \sum_{k=1}^{49} \frac{1}{k} - \sum_{k=2}^{50} \frac{1}{k} \right) \\ & = 49 + \frac{1}{2} \left( \frac{1}{1} - \frac{1}{50} \right) \\ & = \boxed{49.49} \end{aligned}

Sir can you tell me how sumation of k=1 to 49 of 1/k becomes 1/1??

saikat chatterjee - 5 years, 9 months ago

Log in to reply

Lets Evaluate as follows:

( k = 1 49 1 k j = 2 50 1 k ) ( \sum_{ k=1 }^{ 49 }{ \frac { 1 }{ k } - \sum_{ j= 2 }^{ 50 }{ \frac { 1 }{ k } } } )

Substituting:

1 1 1 2 + \frac { 1 }{ 1 } -\frac { 1 }{ 2 } +

1 2 1 3 + \frac { 1 }{ 2 } -\frac { 1 }{ 3 } +

\vdots \quad \quad \quad \vdots

1 48 1 49 + \frac { 1 }{ 48 } -\frac { 1 }{ 49 } +

1 49 1 50 \frac { 1 }{ 49 } -\frac { 1 }{ 50 }

A l l t h e t e r m s c a n c e l s o u t o n l y t e r m s w h i c h a r e l e f t All\quad the\quad terms\quad cancels\quad out\quad only\quad terms\quad which\quad are\quad left

1 1 1 50 \frac { 1 }{ 1 } -\frac { 1 }{ 50 }

Syed Baqir - 5 years, 9 months ago

Log in to reply

You need to close your LaTex syntax with "\("

and "\)" to make it work,

Chew-Seong Cheong - 5 years, 9 months ago

Log in to reply

@Chew-Seong Cheong Thanks it works now

Syed Baqir - 5 years, 9 months ago

k = 1 49 1 k k = 2 50 1 k = 1 1 + k = 2 49 1 k k = 2 49 1 k 1 50 = 1 1 1 50 \displaystyle \color{#3D99F6}{\sum_{k=1}^{49} \frac{1}{k}} - \color{#D61F06}{\sum_{k=2}^{50} \frac{1}{k}} = \color{#3D99F6}{\frac{1}{1} + \sum_{k=2}^{49} \frac{1}{k}} - \color{#D61F06} {\sum_{k=2}^{49} \frac{1}{k} - \frac{1}{50}} = \color{#3D99F6} {\frac{1}{1}} -\color{#D61F06}{\frac{1}{50}}

Alternatively,

k = 1 49 1 k k = 2 50 1 k = 1 1 + 1 2 + 1 3 + . . . + 1 49 ( 1 2 + 1 3 + 1 4 + . . . + 1 50 ) = 1 1 1 50 \begin{aligned} \color{#3D99F6}{\sum_{k=1}^{49} \frac{1}{k}} - \color{#D61F06}{\sum_{k=2}^{50} \frac{1}{k}} & = \color{#3D99F6}{\frac{1}{1} + \frac{1}{2} + \frac{1}{3} +... + \frac{1}{49}} - \left( \color{#D61F06} {\frac{1}{2} + \frac{1}{3} + \frac{1}{4} +... + \frac{1}{50}} \right) \\ & = \color{#3D99F6} {\frac{1}{1}} -\color{#D61F06}{\frac{1}{50}} \end{aligned}

Chew-Seong Cheong - 5 years, 9 months ago

Sir can you tell us how 49 become 50 in the third last line

Syed Baqir - 5 years, 9 months ago

Log in to reply

k = 1 49 1 k + 1 = j = 2 50 1 j \sum_{k=1}^{49} \dfrac{1}{k+1} = \sum_{j=2}^{50} \dfrac{1}{j} Let j = k + 1 j = k+1 when k = 1 k=1 , j = 2 j=2 and when k = 49 k = 49 , j = 50 j=50 . Now replace j j by k k , therefore, k = 1 49 1 k + 1 = k = 2 50 1 k \sum_{k=1}^{49} \dfrac{1}{k+1} = \sum_{k=2}^{50} \dfrac{1}{k}

Chew-Seong Cheong - 5 years, 9 months ago

Log in to reply

Thank you very much

Syed Baqir - 5 years, 9 months ago
Tootie Frootie
Sep 5, 2015

(a^2 + 1)/(a^2 - 1) = 1 + 2/(a^2 - 1) = 1 + 1/(a - 1) - 1/(a + 1), so that means we can write the sum as

(1 + 1/2 - 1/4) + (1 + 1/4 - 1/6) + (1 + 1/6 - 1/8) + ... + (1 + 1/98 - 1/100)

= 49x1 + 1/2 - 1/100

= (4900 + 50 - 1)/100

= 4949/100

except the final term is 1/200 rather than 1/100.... Otherwise this is the clearest and simplest explanation.

Kevin Barnes - 5 years, 9 months ago
William Isoroku
Sep 2, 2015

I let x = 4 x=4 , so the expression becomes;

x + 1 x + 3 x + 1 3 x + 6 x + 1 6 x + . . . . . . . . . + 4950 x + 1 4950 x \frac{x+1}{x}+\frac{3x+1}{3x}+\frac{6x+1}{6x}+.........+\frac{4950x+1}{4950x}

( I figured out the denominator by finite difference sequence)

Simplify the expression as;

( 1 + 1 x ) + ( 1 + 1 3 x ) + ( 1 + 1 6 x ) + . . . . . . . . . . . . ( 1 + 1 4950 x ) (1+\frac{1}{x})+(1+\frac{1}{3x})+(1+\frac{1}{6x})+............(1+\frac{1}{4950x})

Group it:

( 1 + 1 + 1 + 1 + . . . . . . . . . . . 1 ) + ( 1 x + 1 3 x + 1 6 x + . . . . . . . . . . . . . . 1 4950 x ) (1+1+1+1+...........1)+(\frac{1}{x}+\frac{1}{3x}+\frac{1}{6x}+..............\frac{1}{4950x})

Substitute x = 4 x=4 ;

( 1 + 1 + 1 + 1 + . . . . . . . . . . . . 1 ) + ( 1 4 + 1 12 + 1 24 + . . . . . . . . . . . . . . 1 19800 ) (1+1+1+1+............1)+(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+..............\frac{1}{19800})

Here's where the telescopic sequences comes in;

1 4 + 1 12 + 1 24 + . . . . . . . . . . . . 1 19800 = ( 1 2 1 4 ) + ( 1 4 1 6 ) + ( 1 6 1 8 ) + . . . . . . . . . . . . . . + ( 1 198 1 200 ) \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+............\frac{1}{19800}=(\frac{1}{2}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{8})+..............+(\frac{1}{198}-\frac{1}{200})

All the middle terms cancel out leaving:

1 2 1 200 = 0.495 \frac{1}{2}-\frac{1}{200}=0.495

Now the 1's. There are 49 1's in the expression above, so the answer is 49 ( 1 ) + 0.495 = 49.495 49(1)+0.495=\boxed{49.495}

Rajarshi Tiwari
Nov 13, 2015

The sum can be written as S = n = 1 49 ( 2 n + 1 ) 2 + 1 ( 2 n + 1 ) 2 1 = n = 1 49 ( 2 n + 1 ) 2 + 1 ( 2 n + 2 ) ( 2 n ) = 1 4 n = 1 49 ( 2 n + 1 ) 2 + 1 n ( n + 1 ) S=\sum_{n=1}^{49}{(2n+1)^2+1 \over (2n+1)^2-1} =\sum_{n=1}^{49}{(2n+1)^2+1 \over (2n+2)(2n)} =\frac{1}{4}\sum_{n=1}^{49}{(2n+1)^2+1 \over n(n+1)}

Now consider the term

( 2 n + 1 ) 2 + 1 n ( n + 1 ) = ( n + ( n + 1 ) ) 2 + 1 n ( n + 1 ) = ( n 2 + ( n + 1 ) 2 + 2 n ( n + 1 ) + 1 n ( n + 1 ) {(2n+1)^2+1 \over n(n+1)} = {(n+(n+1))^2+1 \over n(n+1)} ={(n^2+(n+1)^2 +2n(n+1) + 1 \over n(n+1)}

= n n + 1 + n + 1 n + 2 + 1 n ( n + 1 ) = 4 + 2 ( 1 n 1 n + 1 ) =\frac{n}{n+1}+\frac{n+1}{n}+2 +\frac{1}{n(n+1)} =4+2\left(\frac{1}{n}-\frac{1}{n+1}\right) Using partial fractions to simplify. Now its straight forward

S = 1 4 n = 1 49 ( 4 + 2 ( 1 n 1 n + 1 ) ) = n = 1 49 1 + 1 2 n = 1 49 ( 1 n 1 n + 1 ) = 49 + 1 2 ( 1 1 50 ) = 49.49 S=\frac{1}{4}\sum_{n=1}^{49} \left( 4+2\left(\frac{1}{n}-\frac{1}{n+1}\right) \right) =\sum_{n=1}^{49}1 +\frac 12 \sum_{n=1}^{49} \left(\frac{1}{n}-\frac{1}{n+1}\right) =49+\frac12 (1-\frac{1}{50})={\bf 49.49}

simple solution, (10/8)+(26/24)+(50/48)+--------------(9802/9800); = 1.25+1.0833+1.0416---------------+1.0002; here we have 49 terms ,so ans should be [49+ something]. we can easily observe that numbers after decimal are conversing to zero, hence (0.25+0.0833+0.0416+----------+0.0002)= 1 (approx). hence correct ans =50(approx).

Hadia Qadir
Sep 6, 2015

use the Sigma Sum from 1 to 49 of [(2n+1)^2+1]/[(2n+1)^2-1] = correct answer is 49.49,

Write a solution. 50.33 is an approximate figure. 49.49 indicated by Mr. Cheong seems to be way out!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...