Squared cosines

Geometry Level 3

cos 2 1 0 + cos 2 5 0 + cos 2 7 0 = ? \large \cos^2 10^\circ + \cos^2 50^\circ + \cos^2 70^\circ = \ ?


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 14, 2017

S = cos 2 1 0 + cos 2 5 0 + cos 2 7 0 = cos 2 π 18 + cos 2 5 π 18 + cos 2 7 π 18 = 1 2 ( cos π 9 + 1 ) + 1 2 ( cos 5 π 9 + 1 ) + 1 2 ( cos 7 π 9 + 1 ) = 1 2 ( cos π 9 + cos 5 π 9 + cos 7 π 9 ) + 3 2 = 1 2 ( cos π 9 + cos 3 π 9 + cos 5 π 9 + cos 7 π 9 cos 3 π 9 ) + 3 2 See Note: k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 = 1 2 ( 1 2 1 2 ) + 3 2 = 3 2 = 1.5 \begin{aligned} S & = \cos^2 10^\circ + \cos^2 50^\circ + \cos^2 70^\circ \\ & = \cos^2 \frac \pi{18} + \cos^2 \frac {5\pi}{18} + \cos^2 \frac {7\pi}{18} \\ & = \frac 12 \left(\cos \frac {\pi}{9} + 1 \right) + \frac 12 \left(\cos \frac {5\pi}{9} + 1 \right) + \frac 12 \left(\cos \frac {7\pi}{9} + 1 \right) \\ & = \frac 12 \left(\cos \frac {\pi}{9} + \cos \frac {5\pi}{9} + \cos \frac {7\pi}{9} \right) + \frac 32 \\ & = \frac 12 \left({\color{#3D99F6}\cos \frac {\pi}{9} + \cos \frac {3\pi}{9} + \cos \frac {5\pi}{9} + \cos \frac {7\pi}{9}} - \cos \frac {3\pi}{9} \right) + \frac 32 & \small \color{#3D99F6} \text{See Note: } \sum_{k=0}^{n-1} \cos \left(\frac {2k+1}{2n+1}\pi \right) = \frac 12 \\ & = \frac 12 \left({\color{#3D99F6}\frac 12} - \frac 12 \right) + \frac 32 \\ & = \frac 32 = \boxed{1.5} \end{aligned}


Note:

S = k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = k = 0 n 1 { e 2 k + 1 2 n + 1 π i } where { z } is the real part of complex number z = { k = 0 n 1 e 2 k + 1 2 n + 1 π i } = { e π i 2 n + 1 k = 0 n 1 e 2 k π i 2 n + 1 } = { e π i 2 n + 1 ( 1 e 2 n π i 2 n + 1 1 e 2 π i 2 n + 1 ) } = { e π i 2 n + 1 + 1 1 e 2 π i 2 n + 1 } = { 1 1 e π i 2 n + 1 } = { 1 1 cos π 2 n + 1 i sin π 2 n + 1 } = { 1 cos π 2 n + 1 + i sin π 2 n + 1 ( 1 cos π 2 n + 1 ) 2 + sin 2 π 2 n + 1 } = { 1 cos π 2 n + 1 + i sin π 2 n + 1 2 2 cos π 2 n + 1 } = 1 2 \begin{aligned} S & = \sum_{k=0}^{n-1} \cos \left(\frac {2k+1}{2n+1}\pi \right) \\ & = \sum_{k=0}^{n-1} \Re \left \{ e^{\frac {2k+1}{2n+ 1} \pi i} \right \} & \small \color{#3D99F6} \text{where } \Re \{ z \} \text{ is the real part of complex number }z \\ & = \Re \left \{\sum_{k=0}^{n-1} e^{\frac {2k+1}{2n+1}\pi i} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \sum_{k=0}^{n-1} e^{\frac {2k \pi i}{2n+1}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \left( \frac {1 - e^{\frac {2n \pi i}{2n+1}}}{1 - e^{\frac {2\pi i}{2n+1}}} \right) \right \} \\ & = \Re \left \{\frac {e^{\frac {\pi i}{2n+1}} + 1}{1 - e^{\frac {2\pi i}{2n+1}}} \right \} \\ & = \Re \left \{\frac 1{1 - e^{\frac {\pi i}{2n+1}}} \right \} \\ & = \Re \left \{\frac 1{1 - \cos {\frac \pi{2n+1}} - i \sin {\frac \pi{2n+1}}} \right \} \\ & = \Re \left \{\frac {1 - \cos {\frac \pi{2n+1}} + i \sin {\frac \pi{2n+1}}}{\left(1 - \cos {\frac \pi{2n+1}}\right)^2 + \sin^2 {\frac \pi{2n+1}}} \right \} \\ & = \Re \left \{\frac {1 - \cos {\frac \pi{2n+1}} + i \sin {\frac \pi{2n+1}}}{2 - 2\cos {\frac \pi{2n+1}}} \right \} \\ & = \boxed{\dfrac 12} \end{aligned}

How did you evaluate cos 2 0 + cos 6 0 + cos 10 0 + cos 14 0 \cos 20^\circ + \cos 60^\circ + \cos 100^\circ + \cos 140^\circ ?

Vitor Santos - 4 years, 3 months ago

Log in to reply

It is an identity. I have provided an explanation.

Chew-Seong Cheong - 4 years, 3 months ago

Log in to reply

I knew it already, but your solution is better when you prove it.

Vitor Santos - 4 years, 3 months ago

Log in to reply

@Vitor Santos Thanks for that actually. Great solution.

Vitor Santos - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...