This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How did you evaluate cos 2 0 ∘ + cos 6 0 ∘ + cos 1 0 0 ∘ + cos 1 4 0 ∘ ?
Log in to reply
It is an identity. I have provided an explanation.
Log in to reply
I knew it already, but your solution is better when you prove it.
Log in to reply
@Vitor Santos – Thanks for that actually. Great solution.
Problem Loading...
Note Loading...
Set Loading...
S = cos 2 1 0 ∘ + cos 2 5 0 ∘ + cos 2 7 0 ∘ = cos 2 1 8 π + cos 2 1 8 5 π + cos 2 1 8 7 π = 2 1 ( cos 9 π + 1 ) + 2 1 ( cos 9 5 π + 1 ) + 2 1 ( cos 9 7 π + 1 ) = 2 1 ( cos 9 π + cos 9 5 π + cos 9 7 π ) + 2 3 = 2 1 ( cos 9 π + cos 9 3 π + cos 9 5 π + cos 9 7 π − cos 9 3 π ) + 2 3 = 2 1 ( 2 1 − 2 1 ) + 2 3 = 2 3 = 1 . 5 See Note: k = 0 ∑ n − 1 cos ( 2 n + 1 2 k + 1 π ) = 2 1
Note:
S = k = 0 ∑ n − 1 cos ( 2 n + 1 2 k + 1 π ) = k = 0 ∑ n − 1 ℜ { e 2 n + 1 2 k + 1 π i } = ℜ { k = 0 ∑ n − 1 e 2 n + 1 2 k + 1 π i } = ℜ { e 2 n + 1 π i k = 0 ∑ n − 1 e 2 n + 1 2 k π i } = ℜ { e 2 n + 1 π i ( 1 − e 2 n + 1 2 π i 1 − e 2 n + 1 2 n π i ) } = ℜ { 1 − e 2 n + 1 2 π i e 2 n + 1 π i + 1 } = ℜ { 1 − e 2 n + 1 π i 1 } = ℜ { 1 − cos 2 n + 1 π − i sin 2 n + 1 π 1 } = ℜ { ( 1 − cos 2 n + 1 π ) 2 + sin 2 2 n + 1 π 1 − cos 2 n + 1 π + i sin 2 n + 1 π } = ℜ { 2 − 2 cos 2 n + 1 π 1 − cos 2 n + 1 π + i sin 2 n + 1 π } = 2 1 where ℜ { z } is the real part of complex number z