Staggered triplets

Calculus Level 4

S = 1 1 3 5 + 1 2 4 6 + 1 3 5 7 + 1 4 6 8 + 1 5 7 9 + S=\dfrac { 1 }{ 1\cdot 3\cdot 5 } +\dfrac { 1 }{ 2\cdot 4\cdot 6 } +\dfrac { 1 }{ 3\cdot 5\cdot 7 } +\dfrac { 1 }{ 4\cdot 6\cdot 8 } +\dfrac { 1 }{ 5\cdot 7\cdot 9 } + \cdots

If S S can be expressed in the form A B C D \frac { A }{ { B }^{ C }D } with A A , B B , C C , and D D being positive prime integers, find the value of A + B + C + D D . \dfrac { A+B+C+D }{ D }.


This problem is original.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Manuel Kahayon
Dec 15, 2015

Seriously??? I don't even know what calculus is and yet I answered it... Anyways...

all of the above fractions can be expressed in the form 1 ( n 2 ) ( n ) ( n + 2 ) \frac {1} {(n-2)(n)(n+2)} , or 1 4 ( 1 ( n 2 ) ( n ) 1 ( n ) ( n + 2 ) ) \frac {1} {4} * (\frac {1} {(n-2)(n)} - \frac {1} {(n)(n+2)})

This simplifies to 1 4 ( 1 ( 1 ) ( 3 ) 1 ( 3 ) ( 5 ) + 1 ( 2 ) ( 4 ) 1 ( 4 ) ( 6 ) + 1 ( 3 ) ( 5 ) 1 ( 5 ) ( 7 ) + 1 ( 4 ) ( 6 ) 1 ( 6 ) ( 8 ) ) \frac {1} {4} * (\frac {1} {(1)(3)} - \frac {1} {(3)(5)} + \frac {1} {(2)(4)} - \frac {1} {(4)(6)} + \frac {1} {(3)(5)} - \frac {1} {(5)(7)} + \frac {1} {(4)(6)} - \frac {1} {(6)(8)} \ldots)

Which telescopes to 1 4 ( 1 ( 1 ) ( 3 ) + 1 ( 2 ) ( 4 ) ) \frac{1} {4} * (\frac {1} {(1)(3)} + \frac {1} {(2)(4)})

This equals to 11 96 \frac {11} {96} or 11 2 5 3 \frac {11} {2^5*3}

Therefore, A = 11 , B = 2 , C = 5 , D = 3 A=11, B=2, C=5, D=3

Then, the required answer is 11 + 2 + 5 + 3 3 = 7 \frac {11 + 2 + 5 +3} {3} = 7

Your solution was very clean. Nice job! Because of your solution, I have changed the category frim calculus to algebra. This is a telescoping series.

Jonas Katona - 5 years, 6 months ago

Log in to reply

I enjoyed that problem a lot Jonas! Was a little messy but had a nice conclusion.

Adrian Castro - 5 years, 6 months ago

Log in to reply

Thank you very much, Adrian! And I know, most of my problems are pretty messy. But that's what I try to do: the problems look simple, but are actually pretty difficult. Either way, the final result is usually pretty elegant.

Jonas Katona - 5 years, 6 months ago

I did the same. How could this be under calculus earlier?

Shreyash Rai - 5 years, 5 months ago

Log in to reply

I have no idea, but someone (probably an admin) changed the category back to calculus.

I guess partial fractions are now considered calculus? But then why did they change my "a growth of triplets" to algebra? It's a debatable subject, I guess...But fundamentally, at least these two of my series questions require no calculus knowledge.

I'm changing it back to algebra. Lol ~

Jonas Katona - 5 years, 5 months ago

Log in to reply

Wait, no, jk, because they put it under a calculus wiki page...

Jonas Katona - 5 years, 5 months ago

Log in to reply

@Jonas Katona Weird. Now both are under calculus. Well nice problem anyway

Shreyash Rai - 5 years, 5 months ago

Log in to reply

@Shreyash Rai Hahaha thank you!

Jonas Katona - 5 years, 5 months ago

Same solution as @Manuel Kahayon .

Vignesh S - 5 years, 2 months ago
Chew-Seong Cheong
Dec 16, 2015

S = n = 1 1 n ( n + 2 ) ( n + 4 ) = 1 8 n = 1 ( 1 n 2 n + 2 + 1 n + 4 ) = 1 8 n = 1 ( 1 n 1 n + 2 1 n + 2 + 1 n + 4 ) = 1 8 ( n = 1 1 n n = 3 1 n n = 3 1 n + n = 5 1 n ) = 1 8 ( 1 1 + 1 2 1 3 1 4 ) = 1 8 ( 12 + 6 4 3 12 ) = 11 96 = 11 2 5 3 \begin{aligned} S & = \sum_{n=1}^\infty \frac{1}{n(n+2)(n+4)} \\ & = \frac{1}{8} \sum_{n=1}^\infty \left( \frac{1}{n} - \frac{2}{n+2} + \frac{1}{n+4} \right) \\ & = \frac{1}{8} \sum_{n=1}^\infty \left( \frac{1}{n} - \frac{1}{n+2} - \frac{1}{n+2} + \frac{1}{n+4} \right) \\ & = \frac{1}{8} \left( \sum_{n=1}^\infty \frac{1}{n} - \sum_{n=3}^\infty \frac{1}{n} - \sum_{n=3}^\infty \frac{1}{n} + \sum_{n=5}^\infty \frac{1}{n} \right) \\ & = \frac{1}{8} \left( \frac{1}{1} + \frac{1}{2} - \frac{1}{3} - \frac{1}{4} \right) = \frac{1}{8} \left(\frac{12+6-4-3}{12}\right) = \frac{11}{96} = \frac{11}{2^53} \end{aligned}

A + B + C + D D = 11 + 2 + 5 + 3 3 = 21 3 = 7 \Rightarrow \dfrac{A+B+C+D}{D} = \dfrac{11+2+5+3}{3} = \dfrac{21}{3} = \boxed{7}

S = n = 3 1 ( n 2 ) n ( n + 2 ) = 1 8 ( n = 3 1 n 2 2 n = 3 1 n + n = 3 1 n + 2 ) = 1 8 ( 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + . . . 2 3 2 4 2 5 2 6 2 7 . . . + 1 5 + 1 6 + 1 7 + . . . ) = 1 8 ( 1 1 + 1 2 1 3 1 4 + 0 + 0... ) = 1 8 11 12 = 11 2 5 3 = A B C D A + B + C + D D = 11 + 2 + 5 + 3 3 = 7 \displaystyle S=\sum_{n=3}^{\infty}\dfrac 1 {(n-2)n(n+2)}=\dfrac1 8 \left ( \sum_{n=3}^{\infty}\dfrac 1 {n - 2} - 2*\sum_{n=3}^{\infty}\dfrac 1 n +\sum_{n=3}^{\infty}\dfrac 1 {n+ 2} \right ) \\ =\dfrac1 8 \left ( \color{#3D99F6}{\dfrac 1 1 +\dfrac 1 2 +\dfrac 1 3 +\dfrac 1 4} +\dfrac 1 5 +\dfrac 1 6 +\dfrac 1 7 +. . . {\Large \color{#D61F06}{ - }}\color{#3D99F6}{ \dfrac 2 3} {\Large \color{#D61F06}{ - }}\color{#3D99F6}{ \dfrac 2 4} {\Large \color{#D61F06}{ - }} \dfrac 2 5{\Large \color{#D61F06}{ - }} \dfrac 2 6 {\Large \color{#D61F06}{ - }} \dfrac 2 7 {\Large \color{#D61F06}{ - }} . . . +\dfrac 1 5 +\dfrac 1 6 +\dfrac 1 7 + . . .\right) \\ =\dfrac1 8 \left ( \dfrac 1 1 +\dfrac 1 2 - \dfrac 1 3 - \dfrac 1 4 +0+0 . . .\right) \\ =\dfrac1 8*\dfrac {11}{12}=\dfrac {11}{2^5*3}=\dfrac A {B^C*D}\\ \therefore ~\dfrac{A+B+C+D}{D}=\dfrac{11+2+5+3}{3}= \huge \color{#EC7300}{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...