In the above five star pyramid, find the angle that minimizes the lateral surface area when the volume is held constant.
Express the answer to six decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
To find A s t a r :
m ∠ A O P = 5 π and by Inscribed Angle Theorem m ∠ E P F = 2 1 m ∠ E O F ⟹ m ∠ A P O = 1 0 π
O C A C = tan ( 5 π ) ⟹ O C = tan ( 5 π ) A C and P C = tan ( 1 0 π ) A C = r − O C = r − tan ( 5 π ) A C ⟹
A C = tan ( 5 π ) + tan ( 1 0 π ) tan ( 1 0 π ) tan ( 5 π ) r
⟹ A △ A O P = 2 1 ( tan ( 5 π ) + tan ( 1 0 π ) tan ( 1 0 π ) tan ( 5 π ) ) r 2
tan ( 5 π ) = 1 − tan 2 ( 1 0 π ) 2 tan ( 1 0 π ) ⟹ A △ A O P = 3 − tan 2 ( 1 0 π ) tan ( 1 0 π ) r 2
⟹ A s t a r = 3 − tan 2 ( 1 0 π ) 1 0 tan ( 1 0 π ) r 2
Let f = 3 − tan 2 ( 1 0 π ) 1 0 tan ( 1 0 π ) .
It will be shown that θ is independent f .
Using the above diagram:
E G 2 = 2 r 2 ( 1 − cos ( 5 4 π ) = 4 sin 2 ( 5 2 π ) r 2 ⟹ E G = 2 sin ( 5 2 π ) r ⟹ O R = r 2 − r 2 sin 2 ( 5 2 π ) = r cos ( 5 2 π ) and R Q = h 2 + r 2 cos 2 ( 5 2 π )
⟹ The lateral surface area A = 5 sin ( 5 2 π ) r h 2 + r 2 cos 2 ( 5 2 π )
The volume V = 3 1 f r 2 h = k ⟹ k = f r 2 3 k ⟹ A ( r ) = 5 sin ( 5 2 π ) r 9 k 2 + f 2 cos 2 ( 5 2 π ) r 6 ⟹ d r d A = ( 5 sin ( 5 2 π ) ) r 2 9 k 2 + f 2 cos 2 ( 5 2 π ) r 6 2 f 2 cos 2 ( 5 2 π ) r 6 − 9 k 2 ⟹ r = ( 2 f cos ( 5 2 π ) 3 k ) 3 1 ⟹ h = f 3 k ( 3 k 2 f cos ( 5 2 π ) ) 3 2
⟹ tan ( θ ) = r h = 2 cos ( 5 2 π ) = 2 cos ( 7 2 ∘ ) ⟹ θ ≈ 2 3 . 6 0 6 0 9 9 ∘ .