Stay away from Wolfram Alpha ..... mind it!

Algebra Level 3

The absolute difference between the real roots of

( x 2 + 2 ) 2 + 8 x 2 = 6 x ( x 2 + 2 ) (x^{2}+2)^{2} +8x^{2} = 6x(x^{2}+2)

is a \sqrt{a} . Find a a .


The answer is 8.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Jan 1, 2015

( x 2 + 2 ) 2 6 x ( x 2 + 2 ) + 9 x 2 x 2 = 0 (x^2 + 2)^2 - 6x(x^2 + 2) + 9x^2 - x^2 = 0

( x 2 + 2 3 x ) 2 x 2 = 0 ( x^2 + 2 - 3x)^2 - x^2 =0

( x 2 2 x + 2 ) ( x 2 4 x + 2 ) = 0 (x^2 - 2x + 2)(x^2 - 4x + 2)=0

( ( x 1 ) 2 + 1 ) ( ( x 2 ) 2 2 ) = 0 ((x - 1)^2 + 1)((x - 2)^2 - 2) = 0

Real solutions - ( x 2 ) 2 = 2 (x - 2)^2 = 2

x = 2 ± 2 x = 2 \pm \sqrt{2}

difference between them = 2 2 = 8 2\sqrt{2} = \sqrt{8}

You are good.

Chew-Seong Cheong - 6 years, 5 months ago

Hey @Karan Siwach you should mention that a is a prime number , in first attempt i took difference as 8 1 / 2 w h i c h g i v e s 4 8^{1/2} ~which~gives~4

What do you think @Calvin Lin

U Z - 6 years, 5 months ago

Log in to reply

I agree that the question did not have a unique answer. I have updated the question accordingly. Can you update your solution?

Calvin Lin Staff - 6 years, 5 months ago

Log in to reply

@Calvin Lin @Megh Choksi ; Sorry, for such a confusion.

Karan Siwach - 6 years, 5 months ago

Log in to reply

@Karan Siwach No worries! Thanks for sharing an interesting problem!

Calvin Lin Staff - 6 years, 5 months ago

Nice solution

Ayush Garg - 6 years, 3 months ago

( x 2 + 2 ) 2 + 8 x 2 = 6 x ( x 2 + 2 ) x 4 + 4 x 2 + 4 + 8 x 2 = 6 x 3 + 12 x (x^2+2)^2+8x^2=6x(x^2+2) \quad \Rightarrow x^4+4x^2+4+8x^2 = 6x^3+12x

x 4 6 x 3 + 12 x 2 12 x + 4 = 0 x 2 6 x + 12 12 x + 4 x 2 = 0 \Rightarrow x^4-6x^3+12x^2-12x+4 = 0\quad \Rightarrow x^2-6x+12-\dfrac {12}{x} + \dfrac {4} {x^2} = 0

( x 2 + 4 + 4 x 2 ) 6 ( x + 2 x ) + 12 4 = 0 \Rightarrow \left( x^2+4+\dfrac {4} {x^2} \right) - 6 \left( x+\dfrac {2} {x} \right) +12 -4 = 0

( x + 2 x 2 ) 2 6 ( x + 2 x ) + 8 = 0 \Rightarrow \left( x+\dfrac {2} {x^2} \right)^2 - 6 \left( x+\dfrac {2} {x} \right) + 8 = 0

( x + 2 x 2 ) = 6 ± 36 32 2 = 6 ± 2 2 = 4 \Rightarrow \left( x+\dfrac {2} {x^2} \right) = \dfrac {6\pm \sqrt{36-32}}{2} = \dfrac {6\pm2} {2} = 4 or 2 2

{ x + 2 x 2 = 4 x 2 4 x + 2 = 0 x = 2 ± 2 x + 2 x 2 = 4 x 2 2 x + 2 = 0 No real roots \Rightarrow \begin{cases} x+\dfrac {2} {x^2} = 4 & \Rightarrow x^2 - 4x + 2 = 0 &\Rightarrow x = 2\pm \sqrt{2}\\ x+\dfrac {2} {x^2} = 4 & \Rightarrow x^2 - 2x + 2 = 0 &\Rightarrow \text{No real roots} \end {cases}

Therefore the absolute difference of real roots

= 2 + 2 2 + 2 = 2 2 = 8 n = 8 = |2+\sqrt{2}-2+\sqrt{2}| = 2\sqrt{2}= \sqrt{8}\quad \Rightarrow n = \boxed{8}

Wonderful , a small typo - in the fourth line , instead of x 2 i t s h o u l d b e x x^2~it~should~be~x

U Z - 6 years, 5 months ago
Aareyan Manzoor
Jan 2, 2015

l e t ( x 2 + 2 ) 2 b e a let\quad (x^2+2)^2\quad be\quad a a 2 + 8 x 2 = 6 x a a = 6 x ± 36 x 2 32 x 2 2 a = 4 x , 2 x a^2+8x^2 =6xa\longrightarrow a=\dfrac{6x\pm\sqrt{36x^2-32x^2}}{2}\rightarrow a=4x,2x a = 4 x x 2 4 x + 2 = 0 x = 2 ± 2 a=4x\longrightarrow x^2-4x+2=0\longrightarrow x=2\pm\sqrt{2} a = 2 x x 2 2 x + 2 = 0 x = 1 ± i a=2x\longrightarrow x^2-2x+2=0\longrightarrow x=1\pm i the real roots 2 + 2 ( 2 2 = 2 2 = 8 \left|2+\sqrt{2}-(2-\sqrt{2}\right|=\left|2\sqrt{2}\right|=\boxed{\sqrt{8}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...