Stop shouting! pt.2

a ! b ! = a ! + b ! + c ! , a + b + c = ? \Large \color{#20A900}a! \Large \color{#3D99F6}b! = \Large \color{#20A900}a!+\Large \color{#3D99F6}b!+\Large \color{#624F41}c!\quad, \ \ \ \ \ \ \ \color{#20A900}a+ \color{#3D99F6}b+ \color{#624F41}c = \ ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Mathh Mathh
Aug 7, 2015

Wlog a b 2 a\ge b\ge 2 (none of a , b a,b can be 0 0 or 1 1 ). Then a = b + k a=b+k with k 0 k\ge 0

Then a ! = a ! b ! + 1 + c ! b ! a!=\frac{a!}{b!}+1+\frac{c!}{b!} implies c = b + m 2 c=b+m\ge 2 with m 0 m\ge 0 .

b ! = 1 + b ! ( b + k ) ! + ( b + m ) ! ( b + k ) ! b!=1+\frac{b!}{(b+k)!}+\frac{(b+m)!}{(b+k)!} . Two cases:

If k > 0 k> 0 , then k > m 0 k>m\ge 0 , so a > c b a>c\ge b .

Then a ! c ! b ! = a ! c ! + b ! c ! + 1 \frac{a!}{c!}b!=\frac{a!}{c!}+\frac{b!}{c!}+1 implies b c b\ge c , so b = c b=c and a > b = c a>b=c .

Then a ! ( b ! 1 ) = 2 b ! a!(b!-1)=2b! , so a ! 2 b ! a!\mid 2b! , so a ! 2 b ! ( b + 1 ) ! a b + 1 a!\le 2b!\le (b+1)!\implies a\le b+1 and b + 1 a > b = c b+1\ge a>b=c , so b + 1 = a b+1=a .

( b + 1 ) ! b ! = ( b + 1 ) ! + 2 b ! ( b + 1 ) ! = b + 3 (b+1)!b!=(b+1)!+2b!\iff (b+1)!=b+3 , so b 3 b { 1 , 3 } b\mid 3\iff b\in\{1,3\} , none of which solve the last equation.

If k = 0 k=0 , then a = b a=b . Then a ! 2 = 2 a ! + ( a + m ) ! a ! = 2 + ( a + m ) ! a ! a!^2=2a!+(a+m)!\iff a!=2+\frac{(a+m)!}{a!} , so m ! a ! 2 > 0 m!\mid a!-2> 0 , since ( a + m a ) = ( a + m ) ! a ! m ! \binom{a+m}{a}=\frac{(a+m)!}{a!m!} is a positive integer.

m ! a ! 2 < a ! m < a m!\le a!-2<a!\implies m<a . But then m ! a ! m!\mid a! , so m ! 2 m { 0 , 1 , 2 } m!\mid 2\iff m\in\{0,1,2\} .

If m = 0 m=0 , then a = b = c a ! 2 = 3 a ! a ! = 3 a=b=c\implies a!^2=3a!\iff a!=3 , impossible.

If m = 2 m=2 , then a ! 2 = 2 a ! + ( a + 2 ) ( a + 1 ) a ! a ! = a 2 + 3 a + 4 a!^2=2a!+(a+2)(a+1)a!\iff a!=a^2+3a+4 , so a 4 a { 1 , 2 , 4 } a\mid 4\iff a\in\{1,2,4\} . None of these solve the last equation.

If m = 1 m=1 , then a ! 2 = 2 a ! + ( a + 1 ) a ! a ! = a + 3 a!^2=2a!+(a+1)a!\iff a!=a+3 , so a 3 a { 1 , 3 } a\mid 3\iff a\in\{1,3\} , which gives the only solution ( a , b , c ) = ( 3 , 3 , 4 ) (a,b,c)=(3,3,4) .

S i n c e a a n d b a r e i n t e r c h a n g e a b l e , w e c a n s a f e l y a s s u m e a = b o r a > b . N o t e t h a t n ! > 0 , a n d s o m i n i m u m c ! = 1. I f b = 1 , a ! b ! < a ! + b ! , a = b > 1 I f a = b = 2 , a ! b ! = a ! + b ! + 0 , b u t c ! 0 , a = b = 2 n o t a s o l u t i o n . 12 = 3 ! 2 ! = 3 ! + 2 ! + 4. B u t c ! 4. n o s o l u t i o n . N e x t 3 ! 3 ! = 36 = 3 ! + 3 ! + 24 s o c ! = 24 a n d c = 4. S o l u t i o n ( a , b , c ) = ( 3 , 3 , 4 ) o n l y . a + b + c = 3 + 3 + 4 = 10. Since~ a~ and~ b ~are~ interchangeable,~ we~ can~ safely~ assume~ a=b~ or~ a>b.\\ Note~ that ~n!>0,~ and~so~minimum~c!=1.\\ If~b=1, a!*b!<a!+b! ,~~ \implies~ a=b>1\\ If~a=b=2,~~a!*b!=a!+b!+0,~but~c!\neq 0,~\therefore~a=b=2~not~a~solution.\\ 12=3!*2!=3!+2!+4. ~~But~c! \neq 4. ~~no~solution.\\ Next~3!*3!=36=3!+3!+24~~so~c!=24~~and~c=4.\\ Solution~(a,b,c)=(3,3,4) ~only.\\ a+b+c=3+3+4=\Large~~\color{#D61F06}{10}.

Wing Tang
Feb 2, 2016

Let a , b , c N { 0 } a, b, c \in \mathbb N \cup \{0\} such that

a ! + b ! + c ! = a ! b ! . ( ) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad a! + b! + c! = a! b!. \quad \quad\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\ (\ast)

Notice that ( ) (\ast) can be rewritten as c ! + 1 = ( a ! 1 ) ( b ! 1 ) . ( ) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad c! + 1 = (a!-1)(b!-1). \quad \quad\quad \quad \quad \quad \quad \quad \quad \quad \quad (\ast \ast)

For a 1 a \leq 1 or b 1 b \leq 1 , ( ) (\ast) becomes 1 + c ! = 0 1+ c! = 0 , which is impossible for c ! > 0 c!>0 .

WLOG, let b a 2 b\geq a \geq 2 .

Case 1 : c b \textbf{Case 1}:\ c \leq b

Dividing ( ) (\ast) by a ! a! and c ! c! yields

1 + b ! a ! + c ! a ! = b ! \quad \quad \quad \quad \quad \quad \quad \quad \quad \displaystyle{1 + \frac{b!}{a!} + \frac{c!}{a!} = b!}\quad \quad \quad and 1 + b ! c ! + a ! c ! = a ! b ! c ! \quad \quad \quad \displaystyle{1 + \frac{b!}{c!} + \frac{a!}{c!} = \frac{a! b!}{c!}}

respectively. Both b ! a ! \displaystyle{\frac{b!}{a!}} and b ! c ! \displaystyle{\frac{b!}{c!}} are integers since b a b\geq a and b c b\geq c .

Therefore, the former and latter equalities imply c a c\geq a and a c a\geq c respectively, i.e. c = a c = a .

Putting a = c a=c into ( ) (\ast\ast) yields

c ! + 1 = ( c ! 1 ) ( b ! 1 ) ( c ! 1 ) + 2 = ( c ! 1 ) ( b ! 1 ) 2 = ( c ! 1 ) ( b ! 2 ) c! + 1 = (c! - 1)(b!-1)\ \Longleftrightarrow\ (c! - 1) + 2 = (c!-1)(b!-1)\ \Longleftrightarrow\ 2 = (c! -1) (b! - 2)

So b ! 2 b! - 2 is either 2 2 or 1 1 , i.e. either b ! = 4 b! = 4 or b ! = 3 b! = 3 , but such b b cannot be found.

Case 2 : b < c \textbf{Case 2}:\ b < c

Dividing ( ) (\ast) by a ! a! and b ! b! yields

1 + b ! a ! + c ! a ! = b ! \quad \quad \quad \quad \quad \quad \quad \quad \quad \displaystyle{1 + \frac{b!}{a!} + \frac{c!}{a!} = b!}\quad \quad \quad and 1 + a ! b ! + c ! b ! = a ! \quad \quad \quad \displaystyle{1 + \frac{a!}{b!} + \frac{c!}{b!} = a! }

respectively. Using the similar argument as Case 1 1 , we have a = b a = b . Putting a = b a = b into ( ) (\ast) yields

c ! = b ! ( b ! 2 ) ( ) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\quad \quad \quad \quad \quad \quad c! = b!(b!-2)\quad \quad \quad\quad \quad \quad \quad \quad \quad \quad \quad \quad \ \ (\ast\ast\ast)

Observe that C b c = c ! b ! ( c b ) ! \displaystyle{C^c_b = \frac{c!}{b! (c-b)!}} is an integer and now we have

C b c = c ! b ! ( c b ) ! = b ! 2 ( c b ) ! \quad \quad \quad\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \displaystyle{C^c_b = \frac{c!}{b! (c-b)!} = \frac{b! - 2}{(c-b)!}}\quad \quad \quad\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad .

Note that b ! 2 ( c b ) ! = C b c 1 \displaystyle{\frac{b! - 2}{(c-b)!} = C^c_b \geq 1} . It follows that b ! ( c b ) ! + 2 > ( c b ) ! b! \geq (c-b)! + 2 > (c-b)! , and so b c b b \geq c - b .

Consequently, b ! ( c b ) ! \displaystyle{\frac{b!}{(c-b)!}} is an integer. By rewriting this result as

C b c = b ! 2 ( c b ) ! = b ! ( c b ) ! 2 ( c b ) ! \quad \quad \quad \quad \quad \quad \quad \quad \quad\quad \quad \quad \quad \quad \displaystyle{C^c_b = \frac{b! - 2}{(c-b)!} = \frac{b!}{(c-b)!} - \frac{2}{(c-b)!}} ,

we have ( c b ) ! (c-b)! as a divisor of 2 2 . Since c > b c > b , c b c - b is either 2 2 or 1 1 .

Sub-case 2 (a) : \textbf{Sub-case 2 (a)}:

For c = b + 1 c = b+1 , putting this result into ( ) (\ast\ast\ast) yields b ! b = 3 b! - b = 3 , for which b b is a divisor of 3 3 . Hence b b is either 1 1 or 3 3 , but only b = 3 b = 3 satisfies this relation.

Sub-case 2 (b) : \textbf{Sub-case 2 (b)}:

For c = b + 2 c = b + 2 , putting this result into ( ) (\ast\ast\ast) yields b ! b 2 3 b = 4 b! - b^2 - 3b = 4 .

Clearly, b b divides 4 4 and so b = 1 , 2 or 4 b = 1, 2 \text{ or } 4 . However, none of them satisfy b ! b 2 3 b = 4 b! - b^2 - 3b = 4 .

In conclusion \textbf{In conclusion} , a = b = 3 a = b = 3 and c = 4 c = 4 and so a + b + c = 10 a+b+c = 10 .

That's funny. Only one word was underlined in this whole thing for being incorrect, and it was the word greek. Ha Ha!

Colin Carmody - 5 years, 4 months ago

for a=0:10

for b=0:10

for c=0:10

if (factorial(a)*factorial(b)==factorial(a)+factorial(b)+factorial(c))

a+b+c

end

end

end

end

Answer: 10

What if a , b , c > 10 a,b,c>10 ? Your solution will not found them.

Drop TheProblem - 5 years, 10 months ago

Log in to reply

Yaa it is only to find the answer! I could not solve the problem.

Shib Shankar Sikder - 5 years, 10 months ago

Log in to reply

However good work. It's not forbidden to use PC ;)

Drop TheProblem - 5 years, 10 months ago

Log in to reply

@Drop TheProblem Yaa brute force. I would love to know the analytical way to solve.

Shib Shankar Sikder - 5 years, 10 months ago

Log in to reply

@Shib Shankar Sikder I've given an 'analytical way to solve'.

mathh mathh - 5 years, 10 months ago

If it is greater than 10, then he could re-write the program to account for that. Luckily, that was not a problem.

Colin Carmody - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...