Straight-forward...

Find the last 2 digits of 9 327 9^{327} .


The answer is 69.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Syed Hamza Khalid
Aug 25, 2018
  1. Simplifying the expression:

9 327 3 654 \large 9^{327} \implies 3^{654}

  1. Find the value of x in:

3 654 x ( m o d 100 ) 3^{654} \equiv x \pmod{100}

  1. Find the value of n in this; to make it easier for further calculations:

3 n 1 ( m o d 100 ) \large 3^n \equiv 1 \pmod{100}

Using the Euler's totient function, we can conclude that:

n = ϕ ( 100 ) = 40 This works becuase gcd (3, 100) = 1 \large n = \phi (100) = 40 \text{ This works becuase gcd (3, 100) = 1 } .

We know that 3 40 1 ( m o d 100 ) 3 640 1 ( m o d 100 ) 3 640 × 3 14 1 × 69 ( m o d 100 ) 3 654 69 ( m o d 100 ) \large \therefore \text{ We know that } 3^{40} \equiv 1 \pmod{100} \\ \large \implies 3^{640} \equiv 1 \pmod{100} \\ \large \implies 3^{640} \times 3^{14} \equiv 1 \times 69 \pmod{100} \\ \large \color{#20A900} \implies 3^{654} \equiv \boxed{ 69 } \pmod{100}

Chew-Seong Cheong
Aug 25, 2018

9 327 9 327 m o d λ ( 100 ) (mod 100) Since gcd ( 9 , 100 ) = 1 , Euler’s theorem applies. 9 327 m o d 20 (mod 100) Carmichael’s lambda function λ ( 100 ) = 20 9 7 (mod 100) ( 10 1 ) 7 (mod 100) ( 70 1 ) (mod 100) 69 (mod 100) \begin{aligned} 9^{327} & \equiv 9^{\color{#3D99F6} 327 \bmod \lambda (100)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Since }\gcd(9, 100) = 1\text{, Euler's theorem applies.} \\ & \equiv 9^{\color{#3D99F6} 327 \bmod 20} \text{ (mod 100)} & \small \color{#3D99F6} \text{Carmichael's lambda function }\lambda(100) = 20 \\ & \equiv 9^7 \text{ (mod 100)} \\ & \equiv (10-1)^7 \text{ (mod 100)} \\ & \equiv (70-1) \text{ (mod 100)} \\ & \equiv \boxed{69} \text{ (mod 100)} \end{aligned}


References :

Can you explain me Carmichael's lambda function?

Syed Hamza Khalid - 2 years, 9 months ago

Log in to reply

Please check the reference.

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

yes I did but couldn't really understand it; is it just the Euler's totient function (phi)

Syed Hamza Khalid - 2 years, 9 months ago

Log in to reply

@Syed Hamza Khalid Carmichael lambda function λ ( ) \lambda (\cdot) is similar to Euler's totient function ϕ ( ) \phi(\cdot) . When a number has 2 as a factor, then ϕ ( n ) = 2 λ ( n ) \phi (n) = 2\lambda (n) if no factor of 2, ϕ ( n ) = λ ( n ) \phi(n) = \lambda(n) . In this case it involves 2 as a factor it is better to use λ ( n ) \lambda(n) because it is smaller.

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

@Chew-Seong Cheong Please up-vote my solution.

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

@Chew-Seong Cheong Yeah, sure.

Syed Hamza Khalid - 2 years, 9 months ago

@Chew-Seong Cheong Thanks a lot; your explanation is amazing

Syed Hamza Khalid - 2 years, 9 months ago

@Chew-Seong Cheong Is there any rules for this function? I mean where can you use it?

Syed Hamza Khalid - 2 years, 9 months ago

Log in to reply

@Syed Hamza Khalid Yes, there are rules. Read up the reference: Euler's theorem . For a n (mod b) a^n \text{ (mod b)} , a a and b b must be coprime integers, that is their greatest common divisor is 1 or gcd ( a , b ) = 1 \gcd(a,b) = 1 .

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

@Chew-Seong Cheong Yeah! Got it! Thanks!

Syed Hamza Khalid - 2 years, 9 months ago

Note that :

9 0 01 ( m o d 100 ) 9^0 \equiv 01 \pmod{100}

9 1 09 ( m o d 100 ) 9^1 \equiv 09 \pmod{100}

9 2 81 ( m o d 100 ) 9^2 \equiv 81 \pmod{100}

9 3 29 ( m o d 100 ) 9^3 \equiv 29 \pmod{100}

9 4 61 ( m o d 100 ) 9^4 \equiv 61 \pmod{100}

9 5 49 ( m o d 100 ) 9^5 \equiv 49 \pmod{100}

9 6 41 ( m o d 100 ) 9^6 \equiv 41 \pmod{100}

9 7 69 ( m o d 100 ) 9^7 \equiv 69 \pmod{100}

9 8 21 ( m o d 100 ) 9^8 \equiv 21 \pmod{100}

9 9 89 ( m o d 100 ) 9^9 \equiv 89 \pmod{100}

9 10 01 ( m o d 100 ) 9 0 ( m o d 100 ) 9^{10} \equiv 01 \pmod{100} \equiv 9^0 \pmod{100}

\space

In addition, 327 = 32 10 + 7 327 = 32*10 + 7 ,

so 9 327 9 7 69 ( m o d 100 ) 9^{327} \equiv 9^7 \equiv 69 \pmod{100} .

Consider the binomial expansion of 9 327 = ( 10 1 ) 327 = k = 0 327 ( 327 k ) 1 0 327 k × ( 1 ) k 9^{327} = (10 - 1)^{327} = \displaystyle \sum_{k=0}^{327} \dbinom{327}{k} 10^{327 - k} \times (-1)^{k} . All the terms in the expansion will have a factor of 100 100 except the last two, so to find the last two digits we only need to consider the last two terms of the expansion, namely

( 327 326 ) 1 0 1 × ( 1 ) 326 + ( 327 327 ) 1 0 0 × ( 1 ) 327 = 327 × 10 1 = 3269 9 327 ( m o d 100 ) = 69 \dbinom{327}{326} 10^{1} \times (-1)^{326} + \dbinom{327}{327} 10^{0} \times (-1)^{327} = 327 \times 10 - 1 = 3269 \Longrightarrow 9^{327} \pmod{100} = \boxed{69} .

Is there some kind of theorem for this?

James Bacon - 2 years, 9 months ago

9^1=09(%100)

9^2=-19(%100)

9^3=29(%100)

9^4=-39(%100)

So, we can see that the series is following a pattern which is:

9^n=((-1)^((n+1)%10) (10 ((n-1)%10)+9)(%100)

Hence, we can conclude that 9^327=69

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...