Such power? Much scare! Many wow!

Algebra Level 5

The roots of the cubic equation

x 3 4 x 2 + 6 x 5 = 0 x^3 - 4x^2 + 6x - 5 = 0

are p , q , r p,q,r . If

p 3 q 4 + r 4 + q 3 p 4 + r 4 + r 3 p 4 + q 4 = a b \large \frac {p^3}{q^4+r^4} + \frac {q^3}{p^4+r^4} + \frac {r^3}{p^4+q^4} = - \frac {a}{b}

for coprime positive integers a , b a,b . What is the value of a 2 b a-2b ?


The answer is 844.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Dec 24, 2013

By Vieta's formula, we have p + q + r = 4 , p q + p r + q r = 6 , p q r = 5 p+q+r = 4, pq+pr+qr=6, pqr=5

The combination of the 3 fractions give

p 3 q 4 + r 4 + q 3 p 4 + r 4 + r 3 p 4 + q 4 \large \frac {p^3}{q^4+r^4} + \frac {q^3}{p^4+r^4} + \frac {r^3}{p^4+q^4}

= ( p 11 + q 11 + r 11 ) + p 4 q 4 ( p 3 + q 3 ) + p 4 r 4 ( p 3 + r 3 ) + q 4 r 4 ( q 3 + r 3 ) + ( p q r ) 3 ( p + q + r ) ( p 4 + q 4 ) ( p 4 + r 4 ) ( q 4 + r 4 ) \large = \frac { ( p^{11} + q^{11} + r^{11} ) + p^4 q^4 (p^3 + q^3) + p^4 r^4 (p^3 + r^3) + q^4 r^4 (q^3 + r^3) + (pqr)^3 (p+q+r) } { (p^4 + q^4)(p^4+r^4)(q^4+r^4) }

Because there's sum of powers of roots ( 11 , 4 , and 3 11,4, \text{and} \space 3 ), this motivates us to use Newton's Sum

However before that, we prefer to find the cubic equation with roots p 4 , q 4 , r 4 p^4,q^4,r^4

Let f ( x ) = x 3 4 x 2 + 6 x 5 = 0 f(x) = x^3-4x^2+6x-5 = 0 , then f ( x ) = 0 f(\sqrt{x}) = 0 has roots p 2 , q 2 , r 2 p^2,q^2,r^2

( x ) 3 4 ( x ) 2 + 6 ( x ) 5 = 0 x x 4 x + 6 x 5 = 0 x ( x + 6 ) = 4 x + 5 x ( x + 6 ) 2 = ( 4 x + 5 ) 2 x 3 4 x 2 4 x 25 = 0 \begin{aligned} (\sqrt x)^3 - 4(\sqrt x)^2 + 6(\sqrt x) - 5 & = & 0 \\ x \sqrt{x} - 4x + 6\sqrt x - 5 & = & 0 \\ \sqrt{x} (x+6) & = & 4x+5 \\ x (x+6)^2 & = & (4x+5)^2 \\ x^3-4x^2-4x-25 & = & 0 \\ \end{aligned}

Similar, let g ( x ) = x 3 4 x 2 4 x 25 g(x) = x^3-4x^2-4x-25 , then g ( x ) = 0 g(\sqrt{x}) = 0 has roots p 4 , q 4 , r 4 p^4,q^4,r^4

( x ) 3 4 ( x ) 2 4 ( x ) 25 = 0 x x 4 x 4 x 25 = 0 x ( x 4 ) = 4 x + 25 x ( x 4 ) 2 = ( 4 x + 25 ) 2 x 3 24 x 2 184 x 625 = 0 \begin{aligned} (\sqrt x)^3 - 4(\sqrt x)^2 - 4(\sqrt x) - 25 & = & 0 \\ x \sqrt{x} - 4x - 4 \sqrt x - 25 & = & 0 \\ \sqrt{x} (x-4) & = & 4x+25 \\ x (x-4)^2 & = & (4x+25)^2 \\ x^3 - 24x^2 - 184x - 625 & = & 0 \\ \end{aligned}

Then by Vieta's formula, p 4 + q 4 + r 4 = 24 , p 4 q 4 + p 4 r 4 + q 4 r 4 = 184 , p 4 q 4 r 4 = 625 p^4 + q^4 + r^4 = 24, p^4 q^4 + p^4 r^4 + q^4 r^4 = -184, p^4 q^4 r^4 = 625

Now we apply Newton's Sum

P 1 4 = 0 P 1 = 4 P_1 - 4 = 0 \Rightarrow P_1 = 4

P 2 4 P 1 + 2 6 = 0 P 2 = 4 P_2 - 4P_1 + 2 \cdot 6 = 0 \Rightarrow P_2 = 4

P 3 4 P 2 + 6 P 1 + 3 ( 5 ) = 0 P 3 = 7 P_3 - 4 P_2 + 6 P_1 + 3 \cdot (-5) = 0 \Rightarrow P_3 = 7

From above, P 4 = 24 P_4 = 24

P 5 4 P 4 + 6 P 3 5 P 2 = 0 P 5 = 74 P_5 - 4 P_4 + 6 P_3 - 5 P_2 = 0 \Rightarrow P_5 = 74

Apply Recursive Relation

P n = 4 P n 1 6 P n 2 + 5 P n 3 P_n = 4P_{n-1} - 6 P_{n-2} + 5 P_{n-3}

P 6 = 187 , P 7 = 424 , P 8 = 944 , P 9 = 2167 , P 10 = 5124 , P 11 = 12214 \Rightarrow P_6 = 187, P_7 = 424, P_8 = 944, P_9 = 2167, P_{10} = 5124, P_{11} = 12214

So the large fraction simplifies to

12214 + p 4 q 4 ( 7 r 3 ) + p 4 r 4 ( 7 q 3 ) + q 4 r 4 ( 7 p 3 ) + 5 3 ( 4 ) ( 24 r 4 ) ( 24 q 4 ) ( 24 p 4 ) \large \frac {12214 + p^4 q^4 (7 - r^3) + p^4 r^4 (7 - q^3) + q^4 r^4 (7 - p^3) + 5^3 (4) } { (24-r^4)(24-q^4)(24-p^4) }

= 12714 + 7 ( p 4 q 4 + p 4 r 4 + q 4 r 4 ) ( p q r ) 3 ( p + q + r ) ( p 4 24 ) ( q 4 24 ) ( r 4 24 ) \large = \frac {12714 + 7( p^4 q^4 + p^4 r^4 + q^4 r^4 ) - (pqr)^3 (p+q+r) } { -(p^4-24)(q^4-24)(r^4-24) }

= 12714 + 7 ( 184 ) ( 5 ) 3 ( 4 ) ( p 4 24 ) ( q 4 24 ) ( r 4 24 ) \large = \frac {12714 + 7( -184 ) - (5)^3 (4) } { -(p^4-24)(q^4-24)(r^4-24) }

= 10926 ( p 4 24 ) ( q 4 24 ) ( r 4 24 ) \large = - \frac {10926 } { (p^4-24)(q^4-24)(r^4-24) }

To evaluate the denominator, we consider h ( x ) = x 3 24 x 2 184 x 625 = 0 h(x) = x^3 - 24x^2 - 184x - 625 = 0 , then h ( x + 24 ) = 0 h(x+24) = 0 has roots ( p 4 24 ) , ( q 4 24 ) , ( r 4 24 ) (p^4-24),(q^4-24),(r^4-24)

( x + 24 ) 3 24 ( x + 24 ) 2 184 ( x + 24 ) 625 = 0 (x+24)^3 - 24(x+24)^2-184(x+24) - 625 = 0 , the constant term of the equation is the negative of the product of roots, which yields 2 4 3 24 ( 2 4 2 ) 184 ( 24 ) 625 = 5041 24^3 - 24(24^2) - 184(24) - 625 = -5041 , so ( p 4 24 ) ( q 4 24 ) ( r 4 24 ) = 5041 (p^4-24)(q^4-24)(r^4-24) = 5041

Hence, the fraction equals to 10926 5041 -\frac {10926}{5041} , and because 5041 = 7 1 2 5041 = 71^2 with 71 10926 71 \nmid 10926 , then the fraction is in its simplest form. So a = 10926 , b = 5041 a 2 b = 844 a = 10926, b = 5041 \Rightarrow a-2b = \boxed{844}

This is how I did it.

Define P n = p n + q n + r n , S n = ( p q ) n + ( q r ) n + ( r p ) n P_n = p^n+q^n+r^n, S_n = (pq)^n+(qr)^n+(rp)^n and Z n = ( p q r ) n Z_n=(pqr)^n for n 0 n\ge 0 . Then we have P 0 = 3 , P 1 = 4 , S 1 = 6 , Z 1 = 5 P_0=3, P_1=4, S_1=6, Z_1=5 . P 2 = P 1 2 2 S 1 = 4 P_2 = P_1^2 - 2S_1 = 4 .

Using the recursive relation P n + 3 = 4 P n + 2 6 P n + 1 + 5 P n P_{n+3}=4P_{n+2} - 6 P_{n+1} + 5 P_n for n 0 n\ge 0 , it's easy to find P 3 = 7 , P 4 = 24 , P 11 = 12214 P_3=7, P_4=24, P_{11}=12214 .

We also have S 2 = S 1 2 2 Z 1 P 1 = 4 S_2 = S_1^2 - 2Z_1P_1 = -4 and S 4 = S 2 2 2 Z 2 P 2 = 184 S_4 = S_2^2 - 2 Z_2 P_2 = -184 .

The numerator of that monster is P 11 + S 4 P 3 = 10926 P_{11}+S_4P_3 = 10926 , and the denominator is S 4 P 4 Z 4 = 5041 S_4P_4 - Z_4 = -5041 .

George G - 7 years, 5 months ago

Log in to reply

Splendid!

Pi Han Goh - 7 years, 5 months ago

What monstrosity is this?

Was what I thought after seeing your solution lol.

Abdur Rehman Zahid - 4 years, 11 months ago

Interesting way to get the value of the denominator.

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Yes, that is call transforming roots of polynomial .

You might also enjoy my solution here .

Glad that you enjoyed this sadistic question!

Pi Han Goh - 4 years, 11 months ago

Log in to reply

What a coincidence, I have a solution there too

Hung Woei Neoh - 4 years, 11 months ago

just Great ! Thanks for nice question and awesome solution.

Piyushkumar Palan - 7 years, 5 months ago

can u plz help me with questions "fine with five" and "abcdefg" ?

Piyushkumar Palan - 7 years, 5 months ago

Nice method! I used the basic method: found out the roots and substituted it

Aditya Kumar - 5 years, 10 months ago
Hung Woei Neoh
Jul 1, 2016

Relevant wiki: Vieta's Formula Problem Solving - Advanced

This is really, really sadistic. I simply must give this problem a solution.

From Vieta's formula, we know that:

p + q + r = 4 p q + p r + q r = 6 p q r = 5 \color{#3D99F6}{p+q+r=4}\\ \color{#D61F06}{pq+pr+qr=6}\\ \color{#EC7300}{pqr=5}

Using Newton's sums, we have

p 2 + q 2 + r 2 = ( p + q + r ) 2 2 ( p q + p r + q r ) = 4 2 2 ( 6 ) = 4 p 3 + q 3 + r 3 = ( p + q + r ) ( p 2 + q 2 + r 2 ) ( p q + p r + q r ) ( p + q + r ) + 3 ( p q r ) = ( 4 ) ( 4 ) ( 6 ) ( 4 ) + 3 ( 5 ) = 7 p 4 + q 4 + r 4 = ( p + q + r ) ( p 3 + q 3 + r 3 ) ( p q + p r + q r ) ( p 2 + q 2 + r 2 ) + ( p q r ) ( p + q + r ) = ( 4 ) ( 7 ) ( 6 ) ( 4 ) + ( 5 ) ( 4 ) = 24 \color{#20A900}{p^2+q^2+r^2} = (\color{#3D99F6}{p+q+r})^2 - 2(\color{#D61F06}{pq+pr+qr}) = \color{#3D99F6}{4}^2-2(\color{#D61F06}{6}) =\color{#20A900}{ 4}\\ \color{#69047E}{p^3+q^3+r^3} = (\color{#3D99F6}{p+q+r})(\color{#20A900}{p^2+q^2+r^2}) - (\color{#D61F06}{pq+pr+qr}) (\color{#3D99F6}{p+q+r})+3(\color{#EC7300}{pqr}) = (\color{#3D99F6}{4})(\color{#20A900}{4}) - (\color{#D61F06}{6}) (\color{#3D99F6}{4})+3(\color{#EC7300}{5})=\color{#69047E}{7}\\ \color{magenta}{p^4+q^4+r^4} = (\color{#3D99F6}{p+q+r})(\color{#69047E}{p^3+q^3+r^3}) - (\color{#D61F06}{pq+pr+qr}) (\color{#20A900}{p^2+q^2+r^2})+(\color{#EC7300}{pqr})(\color{#3D99F6}{p+q+r}) = (\color{#3D99F6}{4})(\color{#69047E}{7}) - (\color{#D61F06}{6}) (\color{#20A900}{4})+(\color{#EC7300}{5})(\color{#3D99F6}{4})=\color{magenta}{24}

The sum we're looking for is

p 3 q 4 + r 4 + q 3 p 4 + r 4 + r 3 p 4 + q 4 = p 3 24 p 4 + q 3 24 q 4 + r 3 24 r 4 = p 3 ( 24 q 4 ) ( 24 r 4 ) + q 3 ( 24 p 4 ) ( 24 r 4 ) + r 3 ( 24 p 4 ) ( 24 q 4 ) ( 24 p 4 ) ( 24 q 4 ) ( 24 r 4 ) = p 3 ( 2 4 2 24 ( q 4 + r 4 ) + q 4 r 4 ) + q 3 ( 2 4 2 24 ( p 4 + r 4 ) + p 4 r 4 ) + r 3 ( 2 4 2 24 ( p 4 + q 4 ) + p 4 q 4 ) 2 4 3 2 4 2 ( p 4 + q 4 + r 4 ) + 24 ( p 4 q 4 + p 4 r 4 + q 4 r 4 ) p 4 q 4 r 4 = p 3 ( 2 4 2 24 ( 24 p 4 ) + q 4 r 4 ) + q 3 ( 2 4 2 24 ( 24 q 4 ) + p 4 r 4 ) + r 3 ( 2 4 2 24 ( 24 r 4 ) + p 4 q 4 ) 2 4 3 2 4 2 ( 24 ) + 24 ( p 4 q 4 + p 4 r 4 + q 4 r 4 ) ( p q r ) 4 = 24 ( p 7 + q 7 + r 7 ) + p 3 q 3 r 3 ( p q + p r + q r ) 24 ( p 4 q 4 + p 4 r 4 + q 4 r 4 ) ( p q r ) 4 \dfrac{p^3}{\color{magenta}{q^4+r^4}}+\dfrac{q^3}{\color{magenta}{p^4+r^4}}+\dfrac{r^3}{\color{magenta}{p^4+q^4}}\\ =\dfrac{p^3}{\color{magenta}{24-p^4}}+\dfrac{q^3}{\color{magenta}{24-q^4}}+\dfrac{r^3}{\color{magenta}{24-r^4}}\\ =\dfrac{p^3(24-q^4)(24-r^4)+q^3(24-p^4)(24-r^4)+r^3(24-p^4)(24-q^4)}{(24-p^4)(24-q^4)(24-r^4)}\\ =\dfrac{p^3(24^2-24(\color{magenta}{q^4+r^4})+q^4r^4)+q^3(24^2-24(\color{magenta}{p^4+r^4})+p^4r^4)+r^3(24^2-24(\color{magenta}{p^4+q^4})+p^4q^4)}{24^3-24^2(\color{magenta}{p^4+q^4+r^4})+24(\color{#27D2E7}{p^4q^4+p^4r^4+q^4r^4})-p^4q^4r^4}\\ =\dfrac{p^3(24^2-24(\color{magenta}{24-p^4})+q^4r^4)+q^3(24^2-24(\color{magenta}{24-q^4})+p^4r^4)+r^3(24^2-24(\color{magenta}{24-r^4})+p^4q^4)}{24^3-24^2(\color{magenta}{24})+24(\color{#27D2E7}{p^4q^4+p^4r^4+q^4r^4})-(\color{#EC7300}{pqr})^4}\\ =\dfrac{24(\color{olive}{p^7+q^7+r^7})+p^3q^3r^3(\color{#D61F06}{pq+pr+qr})}{24(\color{#27D2E7}{p^4q^4+p^4r^4+q^4r^4})-(\color{#EC7300}{pqr})^4}

Now, we extend Newton's sums to the 7 7 th power:

p 5 + q 5 + r 5 = ( p + q + r ) ( p 4 + q 4 + r 4 ) ( p q + p r + q r ) ( p 3 + q 3 + r 3 ) + ( p q r ) ( p 2 + q 2 + r 2 ) = ( 4 ) ( 24 ) ( 6 ) ( 7 ) + ( 5 ) ( 4 ) = 74 p 6 + q 6 + r 6 = ( p + q + r ) ( p 5 + q 5 + r 5 ) ( p q + p r + q r ) ( p 4 + q 4 + r 4 ) + ( p q r ) ( p 3 + q 3 + r 3 ) = ( 4 ) ( 74 ) ( 6 ) ( 24 ) + ( 5 ) ( 7 ) = 187 p 7 + q 7 + r 7 = ( p + q + r ) ( p 6 + q 6 + r 6 ) ( p q + p r + q r ) ( p 5 + q 5 + r 5 ) + ( p q r ) ( p 4 + q 4 + r 4 ) = ( 4 ) ( 187 ) ( 6 ) ( 74 ) + ( 5 ) ( 24 ) = 424 \color{teal}{p^5+q^5+r^5} = (\color{#3D99F6}{p+q+r})(\color{magenta}{p^4+q^4+r^4} ) - (\color{#D61F06}{pq+pr+qr}) (\color{#69047E}{p^3+q^3+r^3})+(\color{#EC7300}{pqr})(\color{#20A900}{p^2+q^2+r^2}) = (\color{#3D99F6}{4})(\color{magenta}{24}) - (\color{#D61F06}{6}) (\color{#69047E}{7})+(\color{#EC7300}{5})(\color{#20A900}{4})=\color{teal}{74}\\ \color{#624F41}{p^6+q^6+r^6}= (\color{#3D99F6}{p+q+r})(\color{teal}{p^5+q^5+r^5} ) - (\color{#D61F06}{pq+pr+qr}) (\color{magenta}{p^4+q^4+r^4})+(\color{#EC7300}{pqr})(\color{#69047E}{p^3+q^3+r^3}) = (\color{#3D99F6}{4})(\color{teal}{74} ) - (\color{#D61F06}{6}) (\color{magenta}{24})+(\color{#EC7300}{5})(\color{#69047E}{7}) =\color{#624F41}{187}\\ \color{olive}{p^7+q^7+r^7}= (\color{#3D99F6}{p+q+r})(\color{#624F41}{p^6+q^6+r^6}) - (\color{#D61F06}{pq+pr+qr}) (\color{teal}{p^5+q^5+r^5} )+(\color{#EC7300}{pqr})(\color{magenta}{p^4+q^4+r^4}) =(\color{#3D99F6}{4})(\color{#624F41}{187}) - (\color{#D61F06}{6}) (\color{teal}{74} )+(\color{#EC7300}{5})(\color{magenta}{24})=\color{olive}{424}

And now, we arrive at the tricky part: p 4 q 4 + p 4 r 4 + q 4 r 4 \color{#27D2E7}{p^4q^4+p^4r^4+q^4r^4}

( p q + p r + q r ) 2 = p 2 q 2 + p 2 r 2 + q 2 r 2 + 2 ( p 2 q r + p q 2 r + p q r 2 ) p 2 q 2 + p 2 r 2 + q 2 r 2 = ( p q + p r + q r ) 2 2 p q r ( p + q + r ) = ( 6 ) 2 2 ( 5 ) ( 4 ) = 4 ( p 2 q 2 + p 2 r 2 + q 2 r 2 ) 2 = p 4 q 4 + p 4 r 4 + q 4 r 4 + 2 ( p 4 q 2 r 2 + p 2 q 4 r 2 + p 2 q 2 r 4 ) p 4 q 4 + p 4 r 4 + q 4 r 4 = ( p 2 q 2 + p 2 r 2 + q 2 r 2 ) 2 2 ( p q r ) 2 ( p 2 + q 2 + r 2 ) = ( 4 ) 2 2 ( 5 ) 2 ( 4 ) = 184 (\color{#D61F06}{pq+pr+qr})^2 = \color{#BA33D6}{p^2q^2+p^2r^2+q^2r^2} + 2(p^2qr+pq^2r+pqr^2)\\ \color{#BA33D6}{p^2q^2+p^2r^2+q^2r^2} =(\color{#D61F06}{pq+pr+qr})^2-2\color{#EC7300}{pqr}(\color{#3D99F6}{p+q+r}) = (\color{#D61F06}{6})^2-2(\color{#EC7300}{5})(\color{#3D99F6}{4}) = \color{#BA33D6}{-4}\\ (\color{#BA33D6}{p^2q^2+p^2r^2+q^2r^2})^2 = \color{#27D2E7}{p^4q^4+p^4r^4+q^4r^4} + 2(p^4q^2r^2+p^2q^4r^2+p^2q^2r^4)\\ \color{#27D2E7}{p^4q^4+p^4r^4+q^4r^4} = (\color{#BA33D6}{p^2q^2+p^2r^2+q^2r^2})^2 -2(\color{#EC7300}{pqr})^2(\color{#20A900}{p^2+q^2+r^2})=(\color{#BA33D6}{-4})^2 -2(\color{#EC7300}{5})^2(\color{#20A900}{4})=\color{#27D2E7}{-184}

With everything prepared, we can now substitute in the values (finally!):

= 24 ( p 7 + q 7 + r 7 ) + ( p q r ) 3 ( p q + p r + q r ) 24 ( p 4 q 4 + p 4 r 4 + q 4 r 4 ) ( p q r ) 4 = 24 ( 424 ) + ( 5 ) 3 ( 6 ) 24 ( 184 ) ( 5 ) 4 = 10176 + 750 4416 625 = 10926 5041 =\dfrac{24(\color{olive}{p^7+q^7+r^7})+(\color{#EC7300}{pqr})^3(\color{#D61F06}{pq+pr+qr})}{24(\color{#27D2E7}{p^4q^4+p^4r^4+q^4r^4})-(\color{#EC7300}{pqr})^4}\\ =\dfrac{24(\color{olive}{424})+(\color{#EC7300}{5})^3(\color{#D61F06}{6})}{24(\color{#27D2E7}{-184})-(\color{#EC7300}{5})^4}\\ =\dfrac{10176+750}{-4416-625}\\ =-\dfrac{10926}{5041}

(Use your calculator, WolframAlpha or whatever to verify that this is the simplest form of the fraction. Don't lie, you're probably already using your calculator at this point)

Therefore, a = 10926 , b = 5041 , a 2 b = 10926 2 ( 5041 ) = 10926 10082 = 844 a=10926,\;b=5041,\;a-2b = 10926-2(5041)=10926-10082 = \boxed{844}

MOST COLORFUL SOLUTION EVER!!!! +1

Pi Han Goh - 4 years, 11 months ago

Log in to reply

Thanks! I almost ran out of colors to use!!!!!!!!! Hopefully, the colors help to make this solution easier to read

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Are you on Slack?

Pi Han Goh - 4 years, 11 months ago

Log in to reply

@Pi Han Goh Nope, I'm driving

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh You typed a colorful solution while driving? WOAHHHHHHH

Pi Han Goh - 4 years, 11 months ago

Log in to reply

@Pi Han Goh =.= The idea of typing this solution while driving sounds so ridiculous and insane... even with a laptop, this solution took me 45 minutes to type out (surprisingly, it took less time than the solution to your Newton's sums problem a few weeks ago)

Nope, I typed this solution a few hours ago. I am using my phone now, and I don't type solutions with my phone

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Haha I was being sarcastic!!

By the way, I really appreciate your write up and I'm glad you enjoyed this question! =D =D =D =D

Pi Han Goh - 4 years, 11 months ago

Lol!!! The colours!! A bright solution!

Ashish Menon - 4 years, 11 months ago

Log in to reply

Colors!!!!!!!!!!

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Dont you ever get tired of plugging in so many many many colours together? :P

Ashish Menon - 4 years, 11 months ago

Log in to reply

@Ashish Menon Not at all. This question was especially thrilling, I had fun solving this problem and writing this colorful solution

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Genius in disguise :P

Ashish Menon - 4 years, 11 months ago

Log in to reply

@Ashish Menon Not really a genius. Just a guy who loves math and has the free time to type colorful solutions

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Nice, I have no free time niw :( So much homeworks

Ashish Menon - 4 years, 11 months ago

Log in to reply

@Ashish Menon It's okay, you can spend more time here during the holidays

Hung Woei Neoh - 4 years, 11 months ago

A very cleanly presented and colourful solution!!!

Abdur Rehman Zahid - 4 years, 11 months ago

Log in to reply

Thanks ¨ \ddot\smile

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Same way,the only thing I did different was strategically not substituting 24 p 24-p⁴ for q 4 + r 4 q^4+r^4 (and similar terms) in the numerator and so on.Therefore I didnot get that nasty p 7 + q 7 + r 7 p^7+q^7+r^7 term.

Abdur Rehman Zahid - 4 years, 11 months ago

Log in to reply

@Abdur Rehman Zahid Google "LaTeX color list". The first result will show a list of basic, predefined LaTeX colors. I don't recommend yellow or pink, too bright.

Ehh? Then how did you calculate p 3 q 4 + p 3 r 4 + p^3q^4 +p^3r^4+\ldots ???

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Thanks :)

I currently don't remember what I did :P I solved this problem about more than a week ago.I'll get back to you soon.

Abdur Rehman Zahid - 4 years, 11 months ago

Also,how do you know so many colours? Do you know a specific page of a list of colours for that?

Abdur Rehman Zahid - 4 years, 11 months ago

Thanks :) I currently don't remember what I did :P I solved this problem about more than a week ago.I'll get back to you soon.

Abdur Rehman Zahid - 4 years, 11 months ago

Loved this!!..I seriously wants to know how much time you spend on this problem to get it correct?

A Former Brilliant Member - 4 years, 11 months ago

Log in to reply

Mmmm...I don't remember....about 20-30 minutes? Maybe?

Hung Woei Neoh - 4 years, 11 months ago

L e t P k = p k + q k + r k , a n d Q k = ( p q r ) k p 3 q 4 + r 4 + p 3 q 4 + r 4 + p 3 q 4 + r 4 = p 3 ( p 4 + q 4 ) ( p 4 + r 4 ) + q 3 ( q 4 + r 4 ) ( q 4 + p 4 ) + r 3 ( r 4 + p 4 ) ( r 4 + q 4 ) ( p 4 + q 4 ) ( q 4 + r 4 ) ( r 4 + p 4 ) B u t p 3 ( p 4 + q 4 ) ( p 4 + r 4 ) = p 3 ( P 4 r 4 ) ( P 4 q 4 ) = p 3 ( P 4 2 P 4 ( q 4 + r 4 ) + q 4 r 4 ) = p 3 ( P 4 2 P 4 ( P 4 p 4 ) + Q 4 / p 4 ) = p 3 ( P 4 2 P 4 2 + P 4 p 4 + Q 4 / p 4 ) p 3 ( p 4 + q 4 ) ( p 4 + r 4 ) = P 4 p 7 + Q 4 / p . . . . . . . . . . . . . . . ( 1 ) t e a l a q u a o l i v e v i o l e t ( p 4 + q 4 ) ( q 4 + r 4 ) ( r 4 + p 4 ) = ( P 4 r 4 ) ( P 4 p 4 ) ( P 4 q 4 ) = P 4 3 P 4 2 ( p 4 + q 4 + r 4 ) + P 4 ( p 4 q 4 + q 4 r 4 + r 4 p 4 ) p 4 q 4 r 4 = P 4 3 P 4 2 ( P 4 ) + P 4 Q 4 ( 1 / p 4 + 1 / q 4 + 1 / r 4 ) Q 4 = 0 P 4 Q 4 P 4 Q 4 . ( p 4 + q 4 ) ( q 4 + r 4 ) ( r 4 + p 4 ) = P 4 Q 4 P 4 Q 4 . . . . . . . . . . . . . ( 2 ) ( A ) X 3 4 X 2 + 6 X 5 = 0 , d i v i d i n g b y 5 X 3 w e g e t ( B ) X 3 6 5 X 2 + 4 5 X 1 5 = 0 W e u s e N e w t o n S u m f o r e q u a t i o n . a 3 X 3 + a 2 X 2 + a 1 X + a o P 1 = a 2 / a 3 , . . . . . . . . . P 2 = a 2 / a 3 P 1 2 a 1 / a 3 . . . . . . . . . P 3 = a 2 / a 3 P 2 a 1 / a 3 P 1 3 a 0 / a 3 ( A ) P 1 = 4 , . . . . . . . . . . . . . . . . . . . . P 2 = 4 4 2 6 = 4 , . . . . . . . . . . . . . . . . . . . . P 3 = 4 4 6 4 + 3 5 = 7 ( B ) P 1 = 6 / 5 , . . . . . . . . . P 2 = 6 / 5 6 / 5 2 4 / 5 = 4 / 25......... P 3 = 6 / 5 ( 4 / 25 ) 4 / 5 6 / 5 + 3 5 = 69 / 125 U s i n g R e c u r s i v e R e l a t i o n f o r b o t h A a n d B : ( A ) P k = 4 P k 1 6 P k 2 + 5 P k 3 P 4 = 4 P 3 6 P 2 + 5 P 1 = 4 7 6 4 + 5 4 = 24. P 5 = 4 P 4 6 P 3 + 5 P 2 = 4 24 6 7 + 5 4 = 74. P 6 = 4 P 5 6 P 4 + 5 P 3 = 4 74 6 24 + 5 7 = 187. P 7 = 4 P 6 6 P 5 + 5 P 4 = 4 187 6 74 + 5 24 = 424 . ( B ) P 4 = 6 5 P 3 + 4 5 P 2 1 5 P 1 = 6 5 ( 69 ) / 125 4 5 ( 4 / 25 ) + 1 5 6 5 = 184 / 625 F r o m ( 1 ) a n d ( 2 ) : p 3 q 4 + r 4 + q 3 r 4 + p 4 + r 3 p 4 + q 4 = c y c P 4 p 7 + Q 4 / p . P 4 Q 4 P 4 Q 4 = P 4 ( p 7 + q 7 + r 7 ) + Q 4 ( p 1 + q 1 + r 1 ) P 4 Q 4 P 4 Q 4 = P 4 P 7 + Q 4 P 1 P 4 Q 4 P 4 Q 4 = 24 424 + 625 6 / 5 24 625 184 / 625 625 = 10926 5041 = a b . a 2 b = 10926 2 5041 = 844. Let~P_k=p^k+q^k+r^k,~~~~and~~~~Q_k=(p*q*r)^k\\ \color{#EC7300}{\dfrac{p^3}{q^4+r^4}+\dfrac{p^3}{q^4+r^4}+\dfrac{p^3}{q^4+r^4}\\ =\dfrac{p^3( p^4+q^4)(p^4+r^4)+q^3( q^4+r^4)(q^4+p^4)+r^3( r^4+p^4)(r^4+q^4)}{( p^4+q^4)( q^4+r^4) ( r^4+p^4)}\\ But~~p^3( p^4+q^4)(p^4+r^4)=p^3( P_4-r^4)(P_4-q^4)=p^3*(P_4^2-P_4(q^4+r^4)+ q^4*r^4 )\\ = p^3*(P_4^2-P_4(P_4-p^4)+ Q_4/p^4 ) =p^3(P_4^2-P_4^2+P_4*p^4+ Q_4/p^4)\\ \therefore~~\color{#3D99F6}{p^3( p^4+q^4)(p^4+r^4)=P_4*p^7+Q_4/p. ..............(1) } \\ \ \ \ \ \ \color{teal}{teal}~~\color{#27D2E7}{aqua}~~\color{olive}{olive}~~\color{#BA33D6}{violet}\\ ( p^4+q^4)( q^4+r^4) ( r^4+p^4)=( P_4-r^4)( P_4-p^4) ( P_4-q^4) \\ =P_4^3-P_4^2(p^4+q^4+r^4)+P_4( p^4*q^4+q^4*r^4 + r^4*p^4)-p^4*q^4*r^4 \\ =P_4^3-P_4^2(P_4)+P_4* Q_4*(1/p^4+1/q^4 +1/r^4)-Q_4\\ =0- P_4* Q_4*P_{-4}-Q_4. } \\ \therefore~~\color{#3D99F6}{( p^4+q^4)( q^4+r^4) ( r^4+p^4)= - P_4* Q_4*P_{\!-4}-Q_4.............(2)} \\ \ \ \ \ \ \ \\ \color{#BA33D6}{(A)~ X^3-4X^2+6X-5=0,~~~dividing~~by~-5*X^3~~~~~ we~get~~~~(B) ~X^{-3}-\frac 6 5X^{-2}+\frac 4 5X-\frac 1 5 =0 \\ We~use~Newton~Sum~for~equation.~~~~~~~~ a_3*X^3+ a_2X^2+a_1*X+a_o \\ P_1=-a_2/a_3,.........P_2=-a_2/a_3*P_1 - 2*a_1/a_3.........P_3=-a_2/a_3*P_2-a_1/a_3*P_1-3*a_0/a_3\\ (A)~~\therefore~P_1=4,....................P_2=4*4-2*6=4,....................P_3=4*4-6*4+3*5=7\\ (B)~~{\color{#20A900}{P_{-1}=6/5,}.}........P_{-2}=6/5*6/5 - 2*4/5= - 4/25.........P_{-3}=6/5*(-4/25)-4/5*6/5+3*5 =-69/125 \\ \ \ \ \ \ \ \ \\ Using~Recursive ~Relation ~for~ both~ A ~ and~ B:-\\ (A)~~P_k=4P_{k-1} - 6P_{k-2}+5P_{k-3} ~~~~~~~~~~~~~~~ \\ P_4=4P_3 - 6P_2+5P_1=4*7-6*4+5*4=24 . ~~~~~~ P_5=4P_4 - 6P_3+5P_2=4*24-6*7+5*4=74 .\\ P_6=4P_5 - 6P_4+5P_3=4*74-6*24+5*7=187 .}\\ \color{#20A900}{P_7=4P_6 - 6P_5+5P_4=4*187-6*74+5*24=424 }.\\ \ \ \ \ \ \ \ \\ (B)~~\color{#20A900}{P_{-4}=\frac 6 5*P_{-3}+\frac 4 5*P_{-2} - \frac 1 5*P_{-1} \\ =\frac 6 5*(-69)/125 -\frac 4 5*(- 4/25) +\frac 1 5*\frac 6 5=184/625 } \\ \color{teal}{From~(1)~and~(2):-\\ \dfrac{p^3}{q^4+r^4}+\dfrac{q^3}{r^4+p^4}+\dfrac{r^3}{p^4+q^4}=\displaystyle \dfrac{ \sum_{cyc} P_4*p^7~~+~~Q_4/p.} {- P_4* Q_4*P_{\!-4}~~-~~Q_4} \\ =\dfrac{P_4*(p^7+q^7+r^7)~~+~~Q_4*(p^{-1}~~ +~~q^{-1}~~ +~~r^{-1} )} {~~ -~~ P_4* Q_4*P_{\!-4}~~-~~Q_4} \\ =\dfrac{P_4*P_7~~+~~Q_4*P_{-1}} {~~-~P_4* Q_4*P_{\!-4}~~-~~Q_4} \\ = \dfrac{24*424~~+~~625*6/5}{ ~-~ 24*625*184/625~~-~~625}=\dfrac{10926}{-~5041} =-\dfrac a b.\\ \therefore~~a-2b= 10926-2*5041 }= \Large \color{#D61F06}{844}.

Are you sure P(k) = x^k +y^k + z^k also works for negative integer k?

Note that Newton's sum only applies for positive powers. But why does it appear to work for negative integers k too?

Pi Han Goh - 3 years, 11 months ago

Log in to reply

I think this is only a representation. It is not doing any calculation. That is what I think.

Niranjan Khanderia - 3 years, 11 months ago

Log in to reply

You are doing a lot of calculations, I don't know what you meant by "representation"...

Pi Han Goh - 3 years, 11 months ago

Log in to reply

@Pi Han Goh representation was not a correct word. My second comment explanations my thinking.

Niranjan Khanderia - 3 years, 11 months ago

I am an engineer. I love maths. We often use math without knowing the theory.
I used Newton's Sum, but do not know the theory. For polynomial with + powers, if we know P n P_n for lower powers, we can calculate for higher ones. My logic. For - Powers, if we know P n P_n for higher powers, we can calculate for lower ones. If we know for n=-1,-2, -3,-4, we can calculate for -5,-6 ... .

Niranjan Khanderia - 3 years, 11 months ago

Log in to reply

That's a hasty generalization. Math is not "oh, because it works for higher ones, so I can reverse it and go the other way too!"

Otherwise, mathematical induction will not make sense.

Pi Han Goh - 3 years, 11 months ago

Log in to reply

@Pi Han Goh I agree. What I meant to say is how I got it and what I got was correct. A request. What I got was a coincident? Or there is a theoretical explanation?

Niranjan Khanderia - 3 years, 11 months ago

Log in to reply

@Niranjan Khanderia Hint: If P(x) is a polynomial with non-zero roots a,b,c, then what are the roots of x^3 ( P(1/x) ) ?

Pi Han Goh - 3 years, 11 months ago

Log in to reply

@Pi Han Goh Thank you.

Niranjan Khanderia - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...