Sum and product are different things, silly

Geometry Level 2

True or False?

If A , B A,B and C C are angles of a non-right triangle, then tan A + tan B + tan C = tan A × tan B × tan C \tan A + \tan B + \tan C = \tan A \times \tan B \times \tan C .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Zuhair
Oct 14, 2016

Here we can see that t a n A + t a n B + t a n C tanA + tan B + tan C = t a n A tan A x t a n B tan B x t a n C tan C .

Now

t a n A ( 1 t a n B t a n C ) = ( t a n C + t a n B ) tanA(1 - tan B tan C) = -( tanC + tan B)

Hence t a n A = ( t a n C + t a n B ) ( 1 t a n B t a n C ) - tan A = \dfrac{(tan C + tan B)}{(1-tanB tan C)}

hence 180 A = B + C 180 - A = B +C hence A + B + C = 180. A+B+C = 180.

Hence A , B ,C Form a traingle. So answer is T R U E \boxed {TRUE} .

You did a mistake here.

tan A ( 1 tan B tan C ) = ( tan B + tan C ) tan A = tan B + tan C 1 tan B tan C tan ( 18 0 A ) = tan ( B + C ) \tan A \left( 1 - \tan B \tan C \right) = - \left( \tan B + \tan C \right) \\ \implies - \tan A = \dfrac{\tan B + \tan C}{1 - \tan B \tan C} \\ \implies \tan \left( 180^{\circ} - A \right) = \tan \left( B+C \right)

But rest of your solution is nice. +1 by me.

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

Ya, i skipped the step .. thanks

Md Zuhair - 4 years, 8 months ago

Log in to reply

Now

tan A ( 1 tan B tan C ) = ( tan C + tan B ) \tan A \left( 1 - \tan B \tan C \right) = - \left( \tan C + \tan B \right)

Hence tan A = ( tan C + tan B ) ( 1 tan B tan C ) - \tan A = \left( \tan C + \tan B \right) \left( 1 - \tan B \tan C \right)

You've written the RHS of the final equation above as product, whereas, it should be

Now

tan A ( 1 tan B tan C ) = ( tan C + tan B ) \tan A \left( 1 - \tan B \tan C \right) = - \left( \tan C + \tan B \right)

Hence tan A = ( tan C + tan B ) ( 1 tan B tan C ) - \tan A = \dfrac{\left( \tan C + \tan B \right)}{\left( 1 - \tan B \tan C \right)}

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

@Tapas Mazumdar Bro.. its not Latexed...

Md Zuhair - 4 years, 8 months ago

Log in to reply

@Md Zuhair Use the following LaTeX for it:

\dfrac{(\tan C + \tan B)}{(1- \tan C \tan B)}

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

@Tapas Mazumdar Ok. Thanks...

Md Zuhair - 4 years, 8 months ago

Log in to reply

@Md Zuhair You're welcome brother. :)

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

@Tapas Mazumdar Please respond to my report. Am I missing something? Thanks, Ed Gray

Edwin Gray - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...