Sum 'em Up 2

Algebra Level 4

Let η = 1 + 1 2 + 1 3 + + 1 2016 . \eta =1+\frac 12+\frac 13+\cdots+\frac 1{2016}.

And 1 2 1 3 + 1 2 + 2 2 1 3 + 2 3 + 1 2 + 2 2 + 3 2 1 3 + 2 3 + 3 3 + + 1 2 + + 201 6 2 1 3 + + 201 6 3 = 4 3 η k 6051 . \frac{1^2}{1^3}+\frac{1^2+2^2}{1^3+2^3}+\frac{1^2+2^2+3^2}{1^3+2^3+3^3}+\cdots+\frac{1^2+\cdots+2016^2}{1^3+\cdots+2016^3}=\frac 43\eta-\frac k{6051}.

Find the value of k k .


The answer is 4032.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sravanth C.
Jan 29, 2017

We can rewrite the summation as r = 1 2016 r ( r + 1 ) ( 2 r + 1 ) / 6 r 2 ( r + 1 ) 2 / 4 = 4 3 η k 6051 2 3 r = 1 2016 ( 2 r + 1 ) ( r + 1 ) r = 2 3 r = 1 2016 2 r k 6051 2 3 r = 1 2016 ( r + 1 ) r ( r + 1 ) r 2 r = k 6051 2 3 r = 1 2016 1 r 1 ( r + 1 ) = k 6051 2 3 ( 1 1 2017 ) = k 6051 k = 4032 \begin{aligned} \displaystyle\sum_{r=1}^{2016}\frac{r(r+1)(2r+1)/6}{r^2(r+1)^2/4}&=\frac 43\eta-\frac k{6051}\\ \frac 23\displaystyle\sum_{r=1}^{2016}\frac{(2r+1)}{(r+1)r}&=\frac 23\displaystyle\sum_{r=1}^{2016}\frac 2r-\frac k{6051}\\ \frac 23\displaystyle\sum_{r=1}^{2016}\frac{(r+1)-r}{(r+1)r}-\frac 2r&=\frac k{6051}\\ \frac 23\displaystyle\sum_{r=1}^{2016}\frac 1r-\frac 1{(r+1)}&=\frac k{6051}\\ \frac 23\left(1-\frac 1{2017}\right)&=\frac k{6051}\\ k&=4032\\ \end{aligned}

First of all the summation is from r=1 to 2016 and the answer is 4036 not 4032, calling @Calvin Lin .

General Manstein - 4 years, 4 months ago

Log in to reply

Could you please explain?

Sravanth C. - 4 years, 4 months ago

Log in to reply

I don't know the math language that you guys write, but According to question the summation of the expression is from r=1 to 2016

General Manstein - 4 years, 4 months ago

Log in to reply

@General Manstein Yes, that was a typo in my solution and I have changed it. But I don't see why the answer should be 4036.

Sravanth C. - 4 years, 4 months ago

Log in to reply

@Sravanth C. In the solution, I think you should change i = 1 \displaystyle \sum_{i=1}^{\infty} to i = 1 2016 \displaystyle \sum_{i=1}^{2016} .

Manuel Kahayon - 4 years, 4 months ago

Log in to reply

@Manuel Kahayon Oops, edited. Thanks!

Sravanth C. - 4 years, 4 months ago

This solution looks good to me.

When submitting a report, it would be helpful to show your work so others can understand what you are thinking.

Calvin Lin Staff - 4 years, 4 months ago

The general term of the series can be written as n ( n + 1 ) ( 2 n + 1 ) 6 n 2 ( n + 1 ) 2 4 \frac{\frac{n(n+1)(2n+1)}{6}}{\frac{n^2(n+1)^2}{4}} . Therefore, n = 1 2016 2 ( 2 n + 1 ) 3 n ( n + 1 ) \sum^{2016}_{n=1} \frac{2(2n+1)}{3n(n+1)} = 2 3 n = 1 2016 2 n + 1 n ( n + 1 ) =\frac{2}{3} \sum^{2016}_{n=1} \frac{2n+1}{n(n+1)} = 2 3 n = 1 2016 ( n + 1 ) + n n ( n + 1 ) =\frac{2}{3} \sum^{2016}_{n=1} \frac{(n+1)+n}{n(n+1)} = 2 3 n = 1 2016 1 n + 1 n + 1 =\frac{2}{3} \sum^{2016}_{n=1} \frac{1}{n}+\frac{1}{n+1} = 2 3 ( 1 + 1 2 + 1 2 + 1 3 + . . . + 1 2016 + 1 2017 ) =\frac{2}{3}(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}) = 2 3 ( 1 + 2 ( 1 2 + 1 3 + . . . + 1 2016 ) + 1 2017 ) =\frac{2}{3}(1+2(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016})+\frac{1}{2017}) = 2 3 ( 1 + 2 ( η 1 ) + 1 2017 ) =\frac{2}{3}(1+2(\eta-1)+\frac{1}{2017}) = 2 3 ( 1 + 2 η 2 + 1 2017 ) =\frac{2}{3}(1+2\eta-2+\frac{1}{2017}) = 2 3 ( 2 η 2016 2017 ) =\frac{2}{3}(2\eta-\frac{2016}{2017}) = 4 η 3 4032 6051 =\frac{4\eta}{3}-\frac{4032}{6051} Therefore, k = 4032 \boxed{k=4032}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...