Sum of 10's a pie

Geometry Level 3

arctan ( 1 3 ) + arctan ( 1 4 ) + arctan ( 1 5 ) + arctan ( 1 n ) = π 4 \arctan\left(\frac {1}{3} \right)+ \arctan\left(\frac {1}{4}\right) + \arctan\left(\frac {1}{5} \right)+ \arctan\left(\frac {1}{n} \right)= \frac {\pi}{4}

Find the positive integer n n such that it satisfy the equation above.


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let a = 3 + i a=3+i , b = 4 + i b=4+i , c = 5 + i c=5+i and d = n + i d=n+i . So,the expression we have is the sum of the arguments of the complex numbers above. But also, this sum is the argument of the product of these complex numbers, a b c d abcd , so:

a b c d = ( 3 + i ) ( 4 + i ) ( 5 + i ) ( n + i ) = ( 11 + 7 i ) ( 5 n 1 + i ( n + 5 ) ) a b c d = 48 n 46 + i ( 46 n + 48 ) abcd=(3+i)(4+i)(5+i)(n+i)=(11+7i)(5n-1+i(n+5)) \\ abcd=48n-46+i(46n+48)

Now, taking the argument of a b c d abcd we have:

arctan ( 46 n + 48 48 n 46 ) = π 4 46 n + 48 48 n 46 = 1 46 n + 48 = 48 n 46 94 = 2 n n = 47 \arctan\left(\dfrac{46n+48}{48n-46}\right)=\dfrac{\pi}{4} \\ \dfrac{46n+48}{48n-46}=1 \\ 46n+48=48n-46 \\ 94=2n \\ n=\boxed{47}

Moderator note:

Very nice. I'm curious whether there is a geometric proof for the given equation like what we have for tan 1 ( 1 2 ) + tan 1 ( 1 3 ) = π 4 \tan^{-1} \left(\frac12\right) + \tan^{-1} \left(\frac13\right) = \frac\pi4 .

See this PDF file .

Alan, a more direct approach using your idea of complex numbers would be to say that

1 + i ( 3 + i ) ( 4 + i ) ( 5 + i ) = 1 2210 ( 47 + i ) \frac{ 1 + i } { (3+i)(4+i)(5+i) } = \frac{1}{2210} ( 47 + i )

Hence, n = 47 n = 47 .

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

Yeah, that is even simpler.

Alan Enrique Ontiveros Salazar - 5 years, 11 months ago

i have not yet understand, what is relation about a r c t a n ( 1 n ) arctan \left ( \frac{1}{n} \right ) with n + i n+i ?

uzumaki nagato tenshou uzumaki - 5 years, 11 months ago

Log in to reply

The argument of a complex number z = a + b i z=a+bi is given by arctan ( b a ) \arctan\left(\dfrac{b}{a}\right) , so in this case we can let all the complex numbers be of the form x + i x+i .

Alan Enrique Ontiveros Salazar - 5 years, 11 months ago

Log in to reply

Thank you :)

uzumaki nagato tenshou uzumaki - 5 years, 11 months ago

How did you find the reformation of "pi/4=(11+7i)(5n-1+i(n+5))"?

Hafizh Ahsan Permana - 5 years, 11 months ago

Log in to reply

a r g ( a b c d ) = a r g ( a ) + a r g ( b ) + a r g ( c ) + a r g ( d ) arg(abcd) = arg(a)+arg(b)+arg(c)+arg(d)

so

π 4 = a r c t a n ( 1 3 ) + a r c t a n ( 1 4 ) + a r c t a n ( 1 5 ) + a r c t a n ( 1 n ) = a r c t a n ( ( 11 + 7 i ) ( 5 n 1 + i ( n + 5 ) ) ) \frac{\pi}{4}= arctan \left ( \frac{1}{3} \right ) + arctan \left ( \frac{1}{4} \right ) +arctan \left ( \frac{1}{5} \right )+ arctan \left ( \frac{1}{n} \right ) = arctan \left ( (11+7i)(5n-1\, +i(n+5)) \right )

uzumaki nagato tenshou uzumaki - 5 years, 11 months ago

Log in to reply

Thanks for your help!

Hafizh Ahsan Permana - 5 years, 11 months ago

Log in to reply

@Hafizh Ahsan Permana sama-sama , you are welcome

uzumaki nagato tenshou uzumaki - 5 years, 11 months ago

Let α = arctan 1 3 \alpha = \arctan {\frac{1}{3}} , β = arctan 1 4 \beta = \arctan {\frac{1}{4}} , γ = arctan 1 5 \gamma = \arctan {\frac{1}{5}} and δ = arctan 1 n \delta = \arctan {\frac{1}{n}} . Then,

α + β + γ + δ = π 4 tan ( α + β + γ + δ ) = tan π 4 tan ( α + β ) + tan ( γ + δ ) 1 tan ( α + β ) tan ( γ + δ ) = 1 1 3 + 1 4 1 1 12 + 1 5 + 1 n 1 1 5 n 1 1 3 + 1 4 1 1 12 × 1 5 + 1 n 1 1 5 n = 1 7 11 + n + 5 5 n 1 1 7 11 × n + 5 5 n 1 = 1 35 n 7 + 11 n + 55 55 n 11 7 n 35 = 1 46 n + 48 48 n 46 = 1 46 n + 48 = 48 n 46 2 n = 94 n = 47 \begin{aligned} \alpha + \beta + \gamma + \delta & = \dfrac{\pi}{4} \\ \tan{(\alpha + \beta + \gamma + \delta)} & = \tan{\dfrac{\pi}{4}} \\ \frac {\tan{(\alpha + \beta)} + \tan {(\gamma + \delta)}} {1 - \tan{(\alpha + \beta)} \tan {(\gamma + \delta)}} & = 1 \\ \frac {\frac{\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{12}} + \frac{\frac{1}{5}+\frac{1}{n}}{1-\frac{1}{5n}}} {1 - \frac{\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{12}} \times \frac{\frac{1}{5}+\frac{1}{n}}{1-\frac{1}{5n}}} & = 1 \\ \frac {\frac{7}{11}+\frac{n+5}{5n-1}} {1-\frac{7}{11} \times \frac{n+5}{5n-1}} & = 1 \\ \frac {35n-7+11n+55} {55n-11-7n-35} & = 1 \\ \frac {46n+48} {48n-46} & = 1 \\ 46n + 48 & = 48n - 46 \\ 2n & = 94 \\ n & = \boxed{47} \end{aligned}

Moderator note:

This is the most conventional approach.

One might argue that the application of complex numbers makes this problem much simpler to solve. Can you solve this problem using the complex numbers approach?

Mas Mus
Oct 8, 2015

arctan ( 1 3 ) + arctan ( 1 4 ) + arctan ( 1 5 ) arctan 1 = arctan ( 1 n ) \arctan\left(\frac {1}{3} \right)+ \arctan\left(\frac {1}{4}\right) + \arctan\left(\frac {1}{5} \right)- \arctan1=-\arctan\left(\frac {1}{n} \right)

arctan ( 1 3 + 1 4 1 1 3 × 1 4 ) + arctan ( 1 5 1 1 + 1 5 × 1 ) = arctan ( 1 n ) \arctan\left(\frac {\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{3}\times{\frac{1}{4}}}\right)+\arctan\left(\frac {\frac{1}{5}-1}{1+\frac{1}{5}\times{1}}\right)=-\arctan\left(\frac {1}{n} \right)

arctan ( 7 11 ) + arctan ( 2 3 ) = arctan ( 1 n ) \arctan\left(\frac {7}{11} \right)+ \arctan\left(-\frac {2}{3}\right)=-\arctan\left(\frac {1}{n} \right)

arctan ( 7 11 2 3 1 + 7 11 × 2 3 ) = arctan ( 1 n ) \arctan\left(\frac {\frac{7}{11}-\frac{2}{3}}{1+\frac{7}{11}\times{\frac{2}{3}}}\right)=-\arctan\left(\frac {1}{n} \right)

arctan ( 1 47 ) = arctan ( 1 47 ) = arctan ( 1 n ) \arctan\left(-\frac {1}{47}\right)=-\arctan\left(\frac {1}{47}\right)=-\arctan\left(\frac {1}{n} \right)

n = 47 n=47

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...