Sum of Fifth Powers

Algebra Level 3

If a + b = 2 a+b = 2 and a 3 + b 3 = 14 a^3 + b^3 = 14 , what is a 5 + b 5 a^5 + b^5 ?


The answer is 82.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

17 solutions

Felipe Sousa
Nov 24, 2013

Expanding ( a + b ) 3 (a+b)^3 we have ( a + b ) 3 = a 3 + b 3 + 3 a b ( a + b ) = > a b = 1 (a+b)^3=a^3+b^3+3ab(a+b) => ab=-1

Expanding ( a + b ) 5 (a+b)^5 we have ( a + b ) 5 = a 5 + b 5 + 5 a b ( a 3 + b 3 ) + 10 ( a b ) 2 ( a + b ) = > a 5 + b 5 = 82 (a+b)^5=a^5+b^5+5ab(a^3+b^3)+10(ab)^2(a+b) => a^5+b^5=82

As for LaTeX \LaTeX ,

\ge

gives \ge

William Cui - 7 years, 6 months ago

Log in to reply

I think he wanted \implies (\implies), not \ge (\ge).

Limao Luo - 7 years, 6 months ago

Log in to reply

Oh whoops yeah you're right. In that case,

\implies

gives \implies and

\Rightarrow

gives \Rightarrow

William Cui - 7 years, 6 months ago
Ayon Pal
Nov 25, 2013

a 3 + b 3 = ( a + b ) 3 3 a b ( a + b ) a^3 + b^3 = (a+b)^3 - 3ab(a+b)

14 = 2 3 3 a b × 2 \implies 14 = 2^3 - 3ab \times 2 [putting the value of ( a + b ) (a+b) and ( a 3 + b 3 ) (a^3 + b^3) ]

14 8 = 6 a b \implies 14 - 8 = - 6ab

6 = 6 a b \implies 6 = -6ab

a b = 1 \implies ab = -1

( a + b ) 5 a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 + a 5 (a + b)^5 \implies a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + a^5

So, a 5 + b 5 ( a + b ) 5 ( 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 ) a^5 + b^5 \implies (a+b)^5 - (5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4)

( a + b ) 5 [ ( 5 a 4 b + 5 a b 4 ) + ( 10 a 3 b 2 + 10 a 2 b 3 ) ] \implies (a+b)^5 - [( 5a^4b + 5ab^4 ) + ( 10a^3b^2 + 10a^2b^3)]

2 5 [ 5 a b ( a 3 + b 3 ) + 10 a 2 b 2 ( a + b ) ] \implies 2^5 - [{5ab(a^3 + b^3)} + {10a^2b^2(a+b)}]

32 [ ( 5 × 1 ( a 3 + b 3 ) ) + ( 10 × ( 1 ) 2 ( a + b ) ) ] \implies 32 - [(5 \times -1 (a^3 + b^3)) + (10 \times (-1)^2 (a+b))]

32 ( ( 5 × 14 ) + ( 10 × 2 ) ) \implies 32 - (( -5 \times 14) + (10 \times 2))

32 ( 70 + 20 ) \implies 32 - (-70 + 20)

32 ( 50 ) 32 + 50 82 \implies 32 - (-50) \implies 32 + 50 \implies \boxed{82}

May I know what is the LaTeX code for the sign "implies" (the arrow)?

敬全 钟 - 7 years, 6 months ago

Log in to reply

\Rightarrow and \Longrightarrow will give , \Rightarrow, \Longrightarrow .

You can also try out \rightarrow and \Leftarrow and \Leftrightarrow :) For this reason, I tend to prefer to use \Rightarrow instead of \implies

Calvin Lin Staff - 7 years, 6 months ago

O, its \implies between . . . ... or . . . ... . you can find this on formatting guide.

Ayon Pal - 7 years, 6 months ago

Log in to reply

Okay, thanks.

敬全 钟 - 7 years, 6 months ago

Log in to reply

@敬全 钟 u. welcome. :-)

Ayon Pal - 7 years, 6 months ago

Given a + b = 2 , a 3 + b 3 = 14 a+b=2 , a^{3}+b^{3}=14 , and applying , * a 3 + b 3 = ( a + b ) 3 3 a b ( a + b ) a^{3}+b^{3}=(a+b)^{3} - 3ab(a+b) , we get a b = 1 ab= -1 *

We know that a 2 + b 2 = ( a + b ) 2 2 a b = 6 a^{2}+b^{2} = (a+b)^{2} - 2ab = 6 (In our sum) .

Now * ( a 2 + b 2 ) ( a 3 + b 3 ) = a 5 + b 5 + ( a b ) 2 ( a + b ) (a^{2}+b^{2})(a^{3}+b^{3})=a^{5}+b^{5}+(ab)^{2}(a+b) , giving a 5 + b 5 = 82... a^{5}+b^{5}= 82... *

Bhargav Das
Nov 24, 2013

We observe, ( a 3 + b 3 ) ( a 2 + b 2 ) = a 5 + b 5 + a 3 b 2 + a 2 b 3 (a^{3}+b^{3})(a^{2}+b^{2})=a^{5}+b^{5}+a^{3}b^{2}+a^{2}b^{3} = a 5 + b 5 + a 2 b 2 ( a + b ) =a^{5}+b^{5}+a^{2}b^{2}(a+b)

Also, ( a + b ) 2 = a 2 + b 2 + 2 a b (a+b)^{2}=a^{2}+b^{2}+2ab \implies 4 2 a b = a 2 + b 2 4-2ab=a^{2}+b^{2} ( $ ) -----(\$)

Now, 14 = a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) = 2 ( 4 3 a b ) 14=a^{3}+b^{3}=(a+b)(a^{2}+b^{2}-ab)=2(4-3ab) [From ( $ ) (\$) ]

\implies a b = 1. ab=-1.

Therefore, a 2 + b 2 = 4 2 a b = 4 2 ( 1 ) = 6. a^{2}+b^{2}=4-2ab=4-2(-1)=6.

Hence, ( a 3 + b 3 ) ( a 2 + b 2 ) = 14 × 6 = 84. (a^{3}+b^{3})(a^{2}+b^{2})=14 \times 6=84.

Therefore, a 5 + b 5 = ( a 3 + b 3 ) ( a 2 + b 2 ) a 2 b 2 ( a + b ) = 84 ( 1 ) 2 × 2 = 82 a^{5}+b^{5}=(a^{3}+b^{3})(a^{2}+b^{2})-a^{2}b^{2}(a+b)=84-(-1)^{2} \times 2=\boxed{82} .

Vitor Terra
Dec 17, 2013

Factorizing the expression we want to evaluate and using a + b = 2 a+b=2 :

a 5 + b 5 = ( a + b ) ( a 4 a 3 b + a 2 b 2 a b 3 + a 4 ) = 2 ( a 4 a 3 b + a 2 b 2 a b 3 + a 4 ) ( I ) a^5 + b^5 = (a+b)(a^4 - a^3b +a^2b^2 - ab^3 + a^4) = 2(a^4 - a^3b +a^2b^2 - ab^3 + a^4) \hspace{2 mm} (I)

Now we need to find the value of the other factor. Factorizing a 3 + b 3 a^3+b^3 :

a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) = 2 ( a 2 a b + b 2 ) = 14 a^3+b^3 = (a+b)(a^2-ab+b^2) = 2(a^2-ab+b^2) = 14

a 2 a b + b 2 = 7 ( I I ) a^2-ab+b^2 = 7 \hspace{2 mm} (II)

Squaring both sides of ( I I ) (II) and manipulating:

a 4 + ( a b ) 2 + b 4 2 a 3 b + 2 a 2 b 2 2 a b 3 = 49 a^4 + (ab)^2 + b^4 - 2a^3b + 2a^2b^2-2ab^3 = 49

a 4 a 3 b + a 2 b 2 a b 3 + a 4 = 49 2 a 2 b 2 + a 3 b + a b 3 a^4 - a^3b + a^2b^2 - ab^3 + a^4 = 49 - 2a^2b^2 + a^3b + ab^3 = 49 2 ( a b ) 2 + a b ( a 2 + b 2 ) ( I I I ) = 49 - 2(ab)^2 + ab(a^2 + b^2) \hspace{2 mm} (III)

What is a b ab and a 2 + b 2 a^2+b^2 ? Squaring both sides of a + b = 2 a+b = 2 , we get that a 2 + 2 a b + b 2 = 4 a^2 + 2ab+b^2 = 4 .

From this and ( I I ) (II) we obtain a b = 1 ab = -1 and a 2 + b 2 = 6 a^2+b^2 = 6 . Plugging that into ( I I I ) (III) :

a 4 a 3 b + a 2 b 2 a b 3 + a 4 = 49 2 ( 1 ) 2 + ( 1 ) ( 6 ) = 41 a^4 - a^3b + a^2b^2 - ab^3 + a^4 =49 - 2(-1)^2 + (-1)(6) = 41

Substituting back into ( I ) (I) :

a 5 + b 5 = 2 41 = 82 a^5 + b^5 = 2 \cdot 41 = \boxed{82}

too lengthy man, see the next solution.

Anirban Ghosh - 7 years, 3 months ago
敬全 钟
Nov 25, 2013

First of all, let's square the both sides of the equation a + b = 2 a+b=2 , and we will use it later on.

4 = ( a + b ) 2 4 = (a+b)^{2}

4 = a 2 + 2 a b + b 2 ( 1 ) 4 = a^{2} + 2ab +b^{2}-(1)

Now, let's factorize a 3 + b 3 = 14 a^{3} + b^{3} = 14 .

14 = ( a + b ) ( a 2 a b + b 2 14 = (a+b)(a^{2} - ab + b^{2}

Substitute the equation a + b = 2 a+b = 2 into the equation above, we get

14 = 2 ( a 2 a b + b 2 14 = 2(a^{2} - ab + b^{2}

Divide 2 2 on both sides,

7 = a 2 a b + b 2 ( 2 ) 7 = a^{2} - ab + b^{2} - (2)

( 2 ) ( 1 ) (2) - (1) ,

3 = 3 a b 3 = -3ab

a b = 1 ab = -1

Substitute a b = 1 ab = -1 into ( 2 ) (2) ,

7 = a 2 + 1 b 2 7 = a^{2} + 1 b^{2}

6 = a 2 + b 2 6 = a^{2} + b^{2}

Then,

( a + b ) 4 = 16 (a+b)^{4} = 16

a 4 + b 4 + 4 a b ( b 3 + a 3 ) + 6 ( a b ) 2 = 16 a^{4} + b^{4} + 4ab(b^{3} + a^{3}) + 6(ab)^{2} = 16

Substitute the equation a 3 + b 3 = 14 a^{3} + b^{3} = 14 and a b = 1 ab = -1 into the equation above,

a^{4} + b^{4} -4(14} + 6 = 16

a 4 + b 4 = 66 a^{4} + b^{4} = 66

Then,

( a + b ) 5 = a 5 + b 5 + 5 a b ( a 3 + b 3 ) + 10 ( a b ) 2 ( a + b ) (a+b)^{5} = a^{5} +b^{5} +5ab(a^{3} + b^{3}) + 10(ab)^{2}(a+b)

Substitute the equation a 3 + b 3 = 14 a^{3} + b^{3} = 14 and a b = 1 ab = -1 into the equation above,

32 = a 5 + b 5 5 ( 14 ) + 10 ( 2 ) 32 = a^{5} +b^{5} - 5(14) +10(2)

So, we get a 5 + b 5 = 82 a^{5} + b^{5} = \boxed {82} in the end.

a little typing mistake here, some of the equation should be like this.

14 = ( a + b ) ( a 2 a b + b 2 ) 14 = (a+b)(a^{2} - ab + b^{2}) (line 6)

14 = 2 ( a 2 a b + b 2 ) 14 = 2(a^{2} - ab + b^{2}) (line 8)

7 = a 2 + 1 + b 2 7 = a^{2} + 1 + b^{2} (line 15)

a 4 + b 4 4 ( 14 ) + 6 = 16 a^{4} + b^{4} - 4(14) + 6 = 16 (line 22)

敬全 钟 - 7 years, 6 months ago

Who on the earth remembers the identity of ( a + b ) 5 (a+b)^5 ? I calculated the values of a a and b b and applied Binomial Theorem for their individual expansion! :P

Akshat Jain - 7 years, 6 months ago

Log in to reply

I always keep the 6th row of pascal's triangle at the back of my mind, so i can easily work out 5 or 7+ when I need :p 1 - 4 are easy to remember.

Arkan Megraoui - 7 years, 6 months ago

Log in to reply

Nice way!

Akshat Jain - 7 years, 6 months ago
Anish Puthuraya
Nov 25, 2013

a+b = 2 a^3 + b^3 = 14

Now, a^3+b^3 = (a + b) * (a^2 + b^2 - ab) Therefore, a^2 + b^2 - ab = 7 ...................................(1)

Also, (a + b)^2 = a^2 + b^2 + 2ab Hence, 4 = a^2 + b^2 + 2ab.......................................(2)

From (1) and (2) , ab = -1..........................................(3)

Using (3) and a+b=2 , we solve for a and b using the quadratic formula. We find, a = 1 + root(2) or 1 - root(2) b = 1 - root(2) or 1 + root(2)

Substituting these values in the required expression, we find, a^5 + b^5 = 82

Ahmad Awalluddin
Jan 19, 2014

a+b=2

a^3+b^3=14= (a+b)(a^2-ab+b^2)

a^2-ab+b^2=7

a^2+2ab+b^2=4

then we substitute the first equation to the second equation

ab=-1

a-1/a-2=0 b-1/b-2=0

then we substitute tha answer into a^5+b^5 henced we got82

did the same way

Anirban Ghosh - 7 years, 3 months ago
Clifford Wilmot
Nov 27, 2013

a 3 + b 3 = 14 a^3+b^3=14 , we can factorize this to give ( a + b ) ( a 2 a b + b 2 ) = 14 (a+b)(a^2-ab+b^2)=14 , but a + b = 2 a+b=2 , so a 2 a b + b 2 = 7 a^2-ab+b^2=7 .

a + b = 2 a+b=2 , so a = 2 b a=2-b , we can substitute this into a 2 a b + b 2 = 7 a^2-ab+b^2=7 to give ( 2 b ) 2 b ( 2 b ) + b 2 = 7 (2-b)^2-b(2-b)+b^2=7 . Solving this quadratic tells us that b = 1 ± 2 b=1\pm \sqrt{2} and a = 1 2 a=1\mp \sqrt{2} , we can then just substitute these values into a 5 + b 5 a^5+b^5 to get our answer of 82 82 .

Sharad Gaikwad
Nov 25, 2013

(a+b)^3= a^3+b^3+ 3ab(a+b) putting a+b = 2 and a^3+b^3=14 we get, ab=-1 and a(2-a)= -1 gives quadratic equation a^2-2a-1=0, splving this we get a = 1+ \sqrt{2} and b= 1-\sqrt{2} . Putting these values of a and b in a^5+b^5, we get the answer 82

Observe that a 3 + b 3 = ( a + b ) 3 3 a b ( a + b ) a^{3}+b^{3}=(a+b)^{3}-3ab(a+b) , so let's obtain first a b ab with the known values:

14 = ( 2 ) 3 3 a b ( 2 ) a b = 1 14=(2)^{3}-3ab(2) \leftrightarrow ab=-1

Now, observe that a 5 + b 5 = ( a + b ) 5 5 a b ( a 3 + b 3 ) 10 ( a b ) 2 ( a + b ) a^{5}+b^{5}=(a+b)^{5}-5ab(a^{3}+b^{3}) - 10(ab)^{2}(a+b) , so replace with the known values again:

a 5 + b 5 = ( 2 ) 5 5 ( 1 ) ( 14 ) 10 ( 1 ) 2 ( 2 ) a^{5}+b^{5}=(2)^{5}-5(-1)(14)-10(-1)^{2}(2)

a 5 + b 5 = 82 a^{5}+b^{5}=\boxed{82}

Andre Yudhistika
Jan 5, 2014

a+b=2

a^3+b^3=(a+b)(a^2-xy+b^2)

from the equation we get (a^2-xy+b^2)=7

a^2+2ab+b^2=4 (from the 1st line) then solve with (a^2-xy+b^2)=7 you'll get ab=-1

solve ab=-1 with a+b=2 you'll get if

a=1-sqrt2 b=1+sqrt2,

if a=1+sqrt2 b=1-sqrt2

just insert it to f(a,b)=a^5+b^5 youll get 82

Arkan Megraoui
Nov 26, 2013

Observe ( a + b ) 3 = a 3 + b 3 + 3 a b ( a + b ) = 8 a b = 1 (a+b)^3=a^3+b^3+3ab(a+b)=8\implies ab=-1 by plugging in what we know. Now ( a + b ) 2 = a 2 + b 2 + 2 a b = a 2 + b 2 2 = 4 (a+b)^2=a^2+b^2+2ab=a^2+b^2-2=4 so a 2 + b 2 = 6 a^2+b^2=6 . Finally 84 = 6 14 = ( a 2 + b 2 ) ( a 3 + b 3 ) = a 5 + b 5 + a 2 b 2 ( a + b ) = a 5 + b 5 + 2 84=6*14=(a^2+b^2)(a^3+b^3)=a^5+b^5+a^2b^2(a+b)=a^5+b^5+2 hence a 5 + b 5 = 84 2 = 82 a^5+b^5=84-2=\boxed{82} .

The last string of equations should be 84 = 6 14 = ( a 2 + b 2 ) ( a 3 + b 3 ) = a 5 + b 5 + ( a b ) 2 ( a + b ) = a 5 + b 5 + 2 84=6*14=(a^2+b^2)(a^3+b^3)=a^5+b^5+(ab)^2(a+b)=a^5+b^5+\color{#D61F06}2

Arkan Megraoui - 7 years, 6 months ago

Let T n = a n + b n T_n=a^n+b^n Then: T n + 1 = a n + 1 + b n + 1 = ( a n + b n ) ( a + b ) a b ( a n 1 + b n 1 ) = ( a + b ) T n a b T n 1 T n + 1 = 2 T n a b T n 1 T_{n+1}=a^{n+1}+b^{n+1}=(a^n+b^n)(a+b)-ab(a^{n-1}+b^{n-1})=(a+b)T_n-abT_{n-1}\\ \boxed{T_{n+1}=2T_n-abT_{n-1}} Hence we have found a recurrence relation!!!.Now all we need is the value of a b ab .This can easily be found as follows: a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) = ( a + b ) ( ( a + b ) 2 3 a b ) = 14 2 ( 4 3 a b ) = 14 3 a b = 7 4 a b = 1 a^3+b^3=(a+b)(a^2-ab+b^2)\\=(a+b)((a+b)^2-3ab)=14\\2(4-3ab)=14\\ \rightarrow -3ab=7-4\rightarrow ab=-1 Hence: T n + 1 = 2 T n + T n + 1 T_{n+1}=2T_n+T_{n+1} The rest is simple computation: T 3 = 2 T 2 + T 1 T 2 = 6 T 4 = 2 T 3 + T 2 T 4 = 34 T 5 = 2 T 4 + T 3 T 5 = 82 T_3=2T_2+T_1\rightarrow \boxed{T_2=6}\\ T_4=2T_3+T_2\rightarrow \boxed{T_4=34}\\ T_5=2T_4+T_3\rightarrow \boxed{T_5=82}

Sahil Jindal
Jan 5, 2015

Using binomial theorem,

( a + b ) 5 = C ( 5 0 ) a 5 b 0 + C ( 5 1 ) a 4 b 1 + C ( 5 2 ) a 3 b 2 + C ( 5 3 ) a 2 b 3 + C ( 5 4 ) a 1 b 4 + C ( 5 5 ) a 0 b 5 (a+b)^{5} = C{5\choose 0} a^5 b^0 + C{5\choose 1} a^4 b^1 + C{5\choose 2} a^3 b^2 + C{5\choose 3} a^2 b^3 + C{5\choose 4} a^1 b^4 + C{5\choose 5} a^0 b^5

which is equal to: a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a 1 b 4 + b 5 a^{5} + 5 a^{4} b + 10 a^{3} b^{2} + 10 a^{2} b^{3} + 5 a^{1} b^{4} + b^{5} Leave it here only.............

Now get to the problem,

We know that: ( a + b ) 3 = a 3 + b 3 + 3 a b ( a + b ) (a+b)^{3} = a^{3} + b^{3} + 3ab(a+b)

putting values we get: 8 = 14 + 6 a b 8 = 14 + 6ab

On solving we get a b = 1 \boxed{ab = -1}

Now get back to where we started.....

We had: ( a + b ) 5 = a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a 1 b 4 + b 5 (a+b)^{5} = a^{5} + 5 a^{4} b + 10 a^{3} b^{2} + 10 a^{2} b^{3} + 5 a^{1} b^{4} + b^{5}

But this can be written as: ( a + b ) 5 = a 5 + ( 5 ) ( a b ) ( a ) 3 + 10 a ( a b ) 2 + 10 b ( a b ) 2 + 5 ( a b ) b 3 + b 5 (a+b)^{5} = a^{5} + (5)(ab) (a)^{3} + 10a (ab)^{2} + 10b (ab)^{2} + 5(ab) b^{3} + b^{5}

Taking commons : ( a + b ) 5 = a 5 + ( 5 ) ( a b ) ( a 3 + b 3 ) + 10 ( a + b ) ( a b ) 2 + b 5 (a+b)^{5} = a^{5} + (5)(ab) ( a^{3} + b^{3} ) + 10(a+b) (ab)^{2} + b^{5}

Putting values of ( a + b ) , ( a 3 + b 3 ) , a b (a+b) , ( a^{3} + b^{3} ), ab ,we get :

( 2 ) 5 = a 5 ( 5 ) ( 14 ) + ( 10 ) ( 2 ) + b 5 (2)^{5} = a^{5} - (5)*(14)+ (10)(2) + b^{5}

which is equal to: 32 = a 5 70 + 20 + b 5 32 = a^{5} - 70 + 20 + b^{5}

Thus a 5 + b 5 a^{5} + b^{5} is equal : 82 \boxed{82}

(a+b)^5 = a^5 + 5 a^ 4b + 10 a^3 b^2 + 10 a^2 b^3 + 5 a b^4 + b^5
2^5 = a^5 + b^5 + 5ab (a^3 + b^3) + 10(ab)^2[a+b]
32 = a^5 +b^5 +70ab + 20(ab)^2
How to find the value of ab?
Using (a+b)^3 = a^3 + 3ab(a+b) + b^3 , you can easly find that ab= -1
So: 32 = a^5 + b^5 + 20 - 70
a^5 + b^5 = 82





Fleyx Chan
Nov 26, 2013

a + b = 2 a^{3} + b^{3} = 14

(a+b)(a^{2} + b^{2} + 2ab ) = 2^{3} ( a^{3} + b^{3} )+ ab^{2} + 2a^{2} b + ba^{2} +2ab^{2} = 8 14 + 3 ( ab^{2} + ba^{2} ) = 8 ab^{2} + ba^{2} = -2 ab( a + b ) = -2 ab = -1 a = -1 / b

a + b = 2 -1/b + b = 2 -1 + b^(2} -2b = 0 b = 1±\sqrt{2} a = -1 / 1±\sqrt{2}

Substitute a = -1 / 1±\sqrt{2} and b = 1±\sqrt{2} into a^{5} + b^{5} , Hence, answer = 82

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...