Sum of Imaginary numbers

Algebra Level 2

Evaluate the following sum:

i 0 + i 1 + i 2 + + i 2020 i^0+i^1+i^2+\dots+i^{2020}

Notation: i = 1 i = \sqrt{-1} denotes the imaginary unit .

i i 1 + i 1+i 0 0 1 i 1-i 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Jul 25, 2020

i 4 n = 1 i^{4n} = 1 , i 4 n + 1 = i i^{4n + 1} = i , i 4 n + 2 = 1 i^{4n + 2} = -1 , and i 4 n + 3 = i i^{4n + 3} = -i for any integer n n .

Therefore:

i 0 + i 1 + i 2 + i 3 + i 4 + i 5 + i 6 + i 7 + . . . + i 2016 + i 2017 + i 2018 + i 2019 + i 2020 i^{0} + i^{1} + i^{2} + i^{3} + i^{4} + i^{5} + i^{6} + i^{7} + ... + i^{2016} + i^{2017} + i^{2018} + i^{2019} + i^{2020}

= ( i 0 + i 1 + i 2 + i 3 ) + ( i 4 + i 5 + i 6 + i 7 ) + . . . + ( i 2016 + i 2017 + i 2018 + i 2019 ) + i 2020 = (i^{0} + i^{1} + i^{2} + i^{3}) + (i^{4} + i^{5} + i^{6} + i^{7}) + ... + (i^{2016} + i^{2017} + i^{2018} + i^{2019}) + i^{2020}

= ( 1 + i + ( 1 ) + ( i ) ) + ( 1 + i + ( 1 ) + ( i ) ) + . . . + ( 1 + i + ( 1 ) + ( i ) ) + 1 = (1 + i + (-1) + (-i)) + (1 + i + (-1) + (-i)) + ... + (1 + i + (-1) + (-i)) + 1

= ( 0 ) + ( 0 ) + . . . + ( 0 ) + 1 = (0) + (0) + ... + (0) + 1

= 1 = \boxed{1}

Thank you for sharing your solution, a brilliant method for solving it.

Hana Wehbi - 10 months, 3 weeks ago

Yeah, grouping is the method. I still made a mistake in that, unable to post a solution :( But it's same as yours so no problem! Still, I wonder whether there is any other method apart from grouping...

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

I was thinking to solve it as a geometric series! Definitely not going to work.

Hana Wehbi - 10 months, 2 weeks ago

Log in to reply

Yeah, cause we wouldn't be able to evaluate the denominator then ( i 0 ( i 2020 1 ) i 1 ) \bigg( \dfrac{i^0(i^{2020} - 1)}{i-1}\bigg)

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

@Mahdi Raza Or maybe we can, what if we rationalize the denominator

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

@Mahdi Raza The top part is 0 still.

Hana Wehbi - 10 months, 2 weeks ago

Log in to reply

@Hana Wehbi Hmmm, I didn't think of that... What's wrong though? Why isn't this method working, any idea?

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

@Mahdi Raza That equation only works for real numbers 1 < r < 1 -1 < r < 1

David Vreken - 10 months, 2 weeks ago

Log in to reply

@David Vreken I agree but I saw a similar problem online where it was solved using geometric finite sum and it worked. I believe it has also to do with the power value.

Hana Wehbi - 10 months, 2 weeks ago

Here's another way to do it, but it's still grouping:

i 0 + i 1 + i 2 + i 3 + i 4 + i 5 + i 6 + i 7 + . . . + i 2016 + i 2017 + i 2018 + i 2019 + i 2020 i^0 + i^1 + i^2 + i^3 + i^4 + i^5 + i^6 + i^7 + ... + i^{2016} + i^{2017} + i^{2018} + i^{2019} + i^{2020}

= ( i 0 + i 4 + . . . + i 2016 + i 2020 ) + ( i 1 + i 5 + . . . + i 2017 ) + ( i 2 + i 6 + . . . + i 2018 ) + ( i 3 + i 7 + . . . + i 2019 ) = (i^0 + i^4 + ... + i^{2016} + i^{2020}) + (i^1 + i^5 + ... + i^{2017}) + (i^2 + i^6 + ... + i^{2018}) + (i^3 + i^7 + ... + i^{2019})

= ( 506 ) + ( 505 i ) + ( 505 ) + ( 505 i ) = (506) + (505i) + (-505) + (-505i)

= 1 = \boxed{1}

I can't think of a different way.

David Vreken - 10 months, 2 weeks ago

Log in to reply

Thank you for sharing it.

Hana Wehbi - 10 months, 1 week ago

A different sub-approach, thanks!

Mahdi Raza - 10 months, 1 week ago
Chew-Seong Cheong
Jul 26, 2020

S n = i 0 + i 1 + i 2 + i 3 + i 4 + i 5 + i 6 + i 7 + + i n = 1 + i 1 i = 0 + 1 + i 1 i = 0 + + i n S n = { 1 if n m o d 4 = 0 1 + i if n m o d 4 = 1 i if n m o d 4 = 2 0 if n m o d 4 = 3 \begin{aligned} S_n & = i^0 + i^1 + i^2 + i^3 + i^4 + i^5 + i^6 + i^7 + \cdots + i^n \\ & = \underbrace{1 + i - 1 - i}_{=0} + \underbrace{1 + i - 1 - i}_{=0} + \cdots + i^n \\ \implies S_n & = \begin{cases} 1 & \text{if } n \bmod 4 = 0 \\ 1 + i & \text{if } n \bmod 4 = 1 \\ i & \text{if } n \bmod 4 = 2 \\ 0 & \text{if } n \bmod 4 = 3 \end{cases} \end{aligned}

Since 2020 m o d 4 = 0 2020 \bmod 4 = 0 , we have S 2020 = 1 S_{2020} = \boxed 1 .

Thank you for sharing your solution.

Hana Wehbi - 10 months, 2 weeks ago
William Allen
Jul 29, 2020

i = i 3 i = -i^3 and i 2 = i 4 i^2 = -i^4 so that i + i 2 + i 3 + i 4 = 0 i+i^2+i^3+i^4 = 0 . Since 4 2020 4|2020 every term apart from the first cancels and the answer is i 0 = 1 i^0=1 .

Thank you for sharing your solution.

Hana Wehbi - 10 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...