Sum of sines.

k = 0 n ( n k ) sin ( k x ) = ? \large \displaystyle \sum_{k=0}^{n} \dbinom{n}{k} \sin (kx) \ = \ ?


Notation: ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N! (M-N)!} denotes the binomial coefficient .

Bonus: What about this one?

k = 0 n ( n k ) cos ( k x ) = ? \displaystyle \sum_{k=0}^{n} \dbinom{n}{k} \cos (kx) \ = \ ?

2 n cos ( x 2 ) sin ( n x 2 ) 2^n \cos \left( \dfrac x2 \right) \sin \left( \dfrac{nx}{2} \right) 2 n + 1 cos n ( n x 2 ) sin ( x 2 ) 2^{n+1} \cos^n \left( \dfrac{nx}{2} \right) \sin \left( \dfrac{x}{2} \right) 2 n cos n ( x 2 ) sin ( n x 2 ) 2^n \cos^n \left( \dfrac x2 \right) \sin \left( \dfrac{nx}{2} \right) 2 n + 1 cos ( n x 2 ) sin n ( n x 2 ) 2^{n+1} \cos \left( \dfrac{nx}{2} \right) \sin^n \left( \dfrac{nx}{2} \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tapas Mazumdar
Mar 19, 2017

Relevant wiki: De Moivre's Theorem

For the main problem

Consider the following sum

k = 0 n ( n k ) [ cos ( k x ) ± i sin ( k x ) ] = k = 0 n ( n k ) e ± i k x = k = 0 n ( n k ) ( e ± i x ) k = ( 1 + e ± i x ) n \begin{aligned} \displaystyle \sum_{k=0}^n \dbinom{n}{k} \left[ \cos (kx) \pm i \sin(kx) \right] &= \sum_{k=0}^n \dbinom{n}{k} e^{\pm ikx} \\ &= \sum_{k=0}^n \dbinom{n}{k} {\left( e^{\pm ix} \right)}^k \\ &= {\left( 1 + e^{\pm ix} \right)}^n \end{aligned}

Hence

k = 0 n ( n k ) sin ( k x ) = { k = 0 n ( n k ) [ cos ( k x ) + i sin ( k x ) ] } { k = 0 n ( n k ) [ cos ( k x ) i sin ( k x ) ] } 2 i = ( 1 + e i x ) n ( 1 + e i x ) n 2 i = [ 1 + cos ( x ) + i sin ( x ) ] n [ 1 + cos ( x ) i sin ( x ) ] n 2 i = [ 2 cos 2 ( x 2 ) + 2 i sin ( x 2 ) cos ( x 2 ) ] n [ 2 cos 2 ( x 2 ) 2 i sin ( x 2 ) cos ( x 2 ) ] n 2 i = 2 n cos n ( x 2 ) { [ cos ( x 2 ) + i sin ( x 2 ) ] n [ cos ( x 2 ) i sin ( x 2 ) ] n } 2 i = 2 n cos n ( x 2 ) { ( e i x 2 ) n ( e i x 2 ) n } 2 i = 2 n cos n ( x 2 ) [ ( e i n x 2 ) ( e i n x 2 ) 2 i ] = 2 n cos n ( x 2 ) sin ( n x 2 ) \begin{aligned} \displaystyle \sum_{k=0}^n \dbinom{n}{k} \sin(kx) &= \dfrac{ \displaystyle \left\{ \sum_{k=0}^n \dbinom{n}{k} \left[ \cos (kx) + i \sin(kx) \right] \right\} - \left\{ \sum_{k=0}^n \dbinom{n}{k} \left[ \cos (kx) - i \sin(kx) \right] \right\} }{2i} \\ \\ &= \dfrac{ {\left( 1 + e^{ix} \right)}^n - {\left( 1 + e^{- ix} \right)}^n }{2i} \\ \\ &= \dfrac{ {\left[ 1 + \cos(x) + i \sin(x) \right]}^n - {\left[ 1 + \cos(x) - i \sin(x) \right]}^n }{2i} \\ \\ &= \dfrac{ {\left[ 2 \cos^2 \left( \frac x2 \right) + 2i \sin \left( \frac x2 \right) \cos \left( \frac x2 \right) \right]}^n - {\left[ 2 \cos^2 \left( \frac x2 \right) - 2i \sin \left( \frac x2 \right) \cos \left( \frac x2 \right) \right]}^n }{2i} \\ \\ &= \dfrac{ 2^n \cos^n \left( \frac x2 \right) \left\{ {\left[ \cos \left( \frac x2 \right) + i \sin \left( \frac x2 \right) \right]}^n - {\left[ \cos \left( \frac x2 \right) - i \sin \left( \frac x2 \right) \right]}^n \right\} }{2i} \\ \\ &= \dfrac{ 2^n \cos^n \left( \frac x2 \right) \left\{ {\left( e^{\frac{ix}{2}} \right)}^n - {\left( e^{\frac{-ix}{2}} \right)}^n \right\} }{2i} \\ \\ &= 2^n \cos^n \left( \dfrac x2 \right) \left[ \dfrac{ {\left( e^{\frac{inx}{2}} \right)} - {\left( e^{\frac{-inx}{2}} \right)} }{2i} \right] \\ \\ &= \boxed{2^n \cos^n \left( \dfrac x2 \right) \sin \left( \dfrac{nx}{2} \right)} \end{aligned}

For the bonus problem

k = 0 n ( n k ) cos ( k x ) = { k = 0 n ( n k ) [ cos ( k x ) + i sin ( k x ) ] } + { k = 0 n ( n k ) [ cos ( k x ) i sin ( k x ) ] } 2 = ( 1 + e i x ) n + ( 1 + e i x ) n 2 = [ 1 + cos ( x ) + i sin ( x ) ] n + [ 1 + cos ( x ) i sin ( x ) ] n 2 = [ 2 cos 2 ( x 2 ) + 2 i sin ( x 2 ) cos ( x 2 ) ] n + [ 2 cos 2 ( x 2 ) 2 i sin ( x 2 ) cos ( x 2 ) ] n 2 = 2 n cos n ( x 2 ) { [ cos ( x 2 ) + i sin ( x 2 ) ] n + [ cos ( x 2 ) i sin ( x 2 ) ] n } 2 = 2 n cos n ( x 2 ) { ( e i x 2 ) n + ( e i x 2 ) n } 2 = 2 n cos n ( x 2 ) [ ( e i n x 2 ) + ( e i n x 2 ) 2 ] = 2 n cos n ( x 2 ) cos ( n x 2 ) \begin{aligned} \displaystyle \sum_{k=0}^n \dbinom{n}{k} \cos(kx) &= \dfrac{ \displaystyle \left\{ \sum_{k=0}^n \dbinom{n}{k} \left[ \cos (kx) + i \sin(kx) \right] \right\} + \left\{ \sum_{k=0}^n \dbinom{n}{k} \left[ \cos (kx) - i \sin(kx) \right] \right\} }{2} \\ \\ &= \dfrac{ {\left( 1 + e^{ix} \right)}^n + {\left( 1 + e^{- ix} \right)}^n }{2} \\ \\ &= \dfrac{ {\left[ 1 + \cos(x) + i \sin(x) \right]}^n + {\left[ 1 + \cos(x) - i \sin(x) \right]}^n }{2} \\ \\ &= \dfrac{ {\left[ 2 \cos^2 \left( \frac x2 \right) + 2i \sin \left( \frac x2 \right) \cos \left( \frac x2 \right) \right]}^n + {\left[ 2 \cos^2 \left( \frac x2 \right) - 2i \sin \left( \frac x2 \right) \cos \left( \frac x2 \right) \right]}^n }{2} \\ \\ &= \dfrac{ 2^n \cos^n \left( \frac x2 \right) \left\{ {\left[ \cos \left( \frac x2 \right) + i \sin \left( \frac x2 \right) \right]}^n + {\left[ \cos \left( \frac x2 \right) - i \sin \left( \frac x2 \right) \right]}^n \right\} }{2} \\ \\ &= \dfrac{ 2^n \cos^n \left( \frac x2 \right) \left\{ {\left( e^{\frac{ix}{2}} \right)}^n + {\left( e^{\frac{-ix}{2}} \right)}^n \right\} }{2} \\ \\ &= 2^n \cos^n \left( \dfrac x2 \right) \left[ \dfrac{ {\left( e^{\frac{inx}{2}} \right)} + {\left( e^{\frac{-inx}{2}} \right)} }{2} \right] \\ \\ &= \boxed{2^n \cos^n \left( \dfrac x2 \right) \cos \left( \dfrac{nx}{2} \right)} \end{aligned}

Nice oroblem. This oroblem should be discrete mathematics level 4 or 5

Md Zuhair - 4 years, 2 months ago

Log in to reply

I would leave that to the staff members. Yes, this problem is very easy if you immediately get hold of the fact that De Moivre's theorem can be applied to solve this easily. And there may be a better approach too (although I don't know of any other good one).

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Level 3 is low for it.

Sahil Silare - 4 years, 2 months ago

Log in to reply

@Sahil Silare Ya true , It is atleast level 4

Md Zuhair - 4 years, 2 months ago

How did you solve the problem?

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Haha.. I founded for 2 terms then 3 terms then I approached towards the general term

Md Zuhair - 4 years, 2 months ago

Set N equal to five and x equal to 45°, and then you evaluate everything.

Guy Alves - 4 years, 2 months ago

Very cool B)

Sahil Silare - 4 years, 2 months ago

Log in to reply

Yes, I never thought of using De Movire here, Brilliant has done a lot to me, It has given ,me much knowledge

Thank you to the Moderators

@Chew-Seong Cheong , @Calvin Lin , @Tapas Mazumdar ( You did the problem )

Many more, Who have helped me, Thank you to all! :D

Md Zuhair - 4 years, 2 months ago

Log in to reply

Thanks for the acknowledgement @Md Zuhair . The Brilliant community was created only for this purpose ; to help learners like you and me gain more knowledge and learn better and intuitive ways to approach problems. Like you, the brilliant community has also taught me a lot!

Thanks for your appreciations, keep learning! ^_^

Tapas Mazumdar - 4 years, 2 months ago

I too did it using De Movier's Theroem.

But anyways as in this problem , @Chew-Seong Cheong sir's solution would be the easiest and fastest method to solve the problem.

Ankit Kumar Jain - 4 years, 1 month ago

Log in to reply

THis is absolutely correct. @Chew-Seong Cheong sirs solution is fastest one, and more efficient, @Tapas Mazumdar , dont you think? Please dont mind anything

Md Zuhair - 4 years, 1 month ago

Log in to reply

By the way , @Tapas Mazumdar Your solution was pretty complex.

As a friend I am just kidding , take that to be a pun (Firstly , it used lots of COMPLEX LATEX and secondly , it included lots of COMPLEX NUMBERS.)

Don't mind... Even my solution was exactly the same. :) :) :)

Ankit Kumar Jain - 4 years, 1 month ago

Log in to reply

@Ankit Kumar Jain Wow! You did like this? Great bro, Tune bataya tha ki tujhe 11th ka kuch nahi ata! J H U T ! \boxed{JHUT!} :)....

Tu toh hardest chapter kar ke baitha hai!

Md Zuhair - 4 years, 1 month ago
Chew-Seong Cheong
Apr 12, 2017

Relevant wiki: Euler's Formula

S = k = 0 n ( n k ) sin k x = k = 0 n ( n k ) { e i k x } By Euler’s formula: e i θ = cos θ + i sin θ = { k = 0 n ( n k ) e i k x } where { z } is the real part of complex number z . = { ( 1 + e i x ) n } = { ( 1 + cos x + i sin x ) n } = { ( 1 + 2 cos 2 x 2 1 + 2 i sin x 2 cos x 2 ) n } = { 2 n cos n x 2 ( cos x 2 + i sin x 2 ) n } = { 2 n cos n x 2 e i n x 2 } = 2 n cos n x 2 sin n x 2 \begin{aligned} S & = \sum_{k=0}^n {n \choose k} \sin kx \\ & = \sum_{k=0}^n {n \choose k} \Im \left \{e^{ikx} \right \} & \small \color{#3D99F6} \text{By Euler's formula: } e^{i\theta} = \cos \theta + i \sin \theta \\ & = \Im \left \{\sum_{k=0}^n {n \choose k} e^{ikx} \right \} & \small \color{#3D99F6} \text{where }\Im\{z\} \text{ is the real part of complex number } z. \\ & = \Im \left \{\left(1+e^{ix} \right)^n \right \} \\ & = \Im \left \{\left(1+\cos x + i\sin x \right)^n \right \} \\ & = \Im \left \{\left(1+2\cos^2 \frac x2 - 1 + 2 i \sin \frac x2 \cos \frac x2 \right)^n \right \} \\ & = \Im \left \{2^n \cos^n \frac x2 \left( \cos \frac x2 + i \sin \frac x2 \right)^n \right \} \\ & = \Im \left \{2^n \cos^n \frac x2 \cdot e^{i \frac {nx} 2} \right \} \\ & = \boxed {2^n \cos^n \dfrac x2 \sin \dfrac {nx} 2} \end{aligned}


Bonus : Similar solution see here .

Wesley Zumino
Jul 5, 2017

For this problem, two useful tools are:

Binomial Theorem: ( a + b ) n = k = 0 n a k b n k (a+b)^n = \displaystyle \sum_{k=0}^n a^k b^{n-k} ;

Euler's formula: e i x = c o s ( x ) + i s i n ( x ) s i n ( x ) = 1 2 i ( e i x e i x ) e^{ix} = cos(x) + i \text{ } sin(x) \text{ } \Rightarrow \text{ } sin(x) = \frac{1}{2i} (e^{ix} - e^{-ix}) and c o s ( x ) = 1 2 ( e i x + e i x ) cos(x) = \frac{1}{2} (e^{ix} + e^{-ix}) .

Then,

k = 0 n ( n k ) s i n ( k x ) = k = 0 n ( n k ) 1 2 i ( e i k x e i k x ) \displaystyle \sum_{k=0}^n {n \choose k} sin(kx) = \sum_{k=0}^n {n \choose k} \frac{1}{2i} (e^{ikx} - e^{-ikx})

= 1 2 i k = 0 n ( n k ) e i k x 1 2 i k = 0 n ( n k ) e i k x \displaystyle = \frac{1}{2i} \sum_{k=0}^n {n \choose k} e^{ikx} - \frac{1}{2i} \sum_{k=0}^n {n \choose k} e^{-ikx}

= 1 2 i ( e i x + 1 ) n 1 2 i ( e i x + 1 ) n \displaystyle = \frac{1}{2i} (e^{ix}+1)^n - \frac{1}{2i} (e^{-ix}+1)^n \qquad [Binomial Thm with a = e ± i x a=e^{\pm ix} and b = 1 b=1 ]

= 1 2 i ( e i x / 2 ) n ( e i x / 2 + e i x / 2 ) n 1 2 i ( e i x / 2 ) n ( e i x / 2 + e i x / 2 ) n \displaystyle = \frac{1}{2i} (e^{ix/2})^n(e^{ix/2}+e^{-ix/2})^n - \frac{1}{2i} (e^{-ix/2})^n(e^{-ix/2}+e^{ix/2})^n

= 1 2 i ( e i n x / 2 e i n x / 2 ) ( e i x / 2 + e i x / 2 ) n \displaystyle = \frac{1}{2i} (e^{inx/2} - e^{-inx/2}) (e^{ix/2}+e^{-ix/2})^n

= s i n ( n x / 2 ) ( 2 c o s ( x / 2 ) ) n \displaystyle = sin(nx/2)(2 \; cos(x/2))^n \qquad [from the inverted Euler's formula for s i n ( n x ) sin(nx) ]

k = 0 n ( n k ) s i n ( k x ) = 2 n c o s n ( x / 2 ) s i n ( n x / 2 ) \Rightarrow \boxed{\displaystyle \sum_{k=0}^n {n \choose k} sin(kx) = 2^n cos^n(x/2) sin(nx/2)} .

For the bonus problem, observe that c o s ( x ) = 1 2 ( e i x + e i x ) cos(x) = \frac{1}{2} (e^{ix} + e^{-ix}) and that, in the above derivation, the factor 1 2 i \frac{1}{2i} and the - sign between the e ± i k x e^{\pm ikx} terms from the s i n ( k x ) sin(kx) replacement in the first equality are the same as those in the next-to-last equality. So, the replacement 1 2 i 1 2 \frac{1}{2i} \rightarrow \frac{1}{2} and + - \rightarrow + , respectively, of those in the derivation and using the inverted Euler's formula for c o s ( x ) cos(x) immediately yields:

k = 0 n ( n k ) c o s ( k x ) = 2 n c o s n ( x / 2 ) c o s ( n x / 2 ) \Rightarrow \boxed{\displaystyle \sum_{k=0}^n {n \choose k} cos(kx) = 2^n cos^n(x/2) cos(nx/2)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...