Sum of Squares and a Product

Algebra Level 5

Let N N be the product of all possible values of x x such that ( x , y ) (x,y) satisfies the equation x 2 + y 2 = 28 x y x^2+y^2=28-xy , and that both x x and y y are integers. Find the last three digits of N |N| .


The answer is 304.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Edmund Heng
Dec 17, 2013

Rearranging the equation in terms of y y , y 2 + ( x ) y + ( x 2 28 ) = 0 y^2+(x)y+(x^2-28)=0 y = x ± x 2 4 ( 1 ) ( x 2 28 ) 2 ( 1 ) y=\frac{-x \pm \sqrt {x^2 -4(1)(x^2-28)}}{2(1)} y = x ± 112 3 x 2 2 y=\frac{-x \pm \sqrt {112-3x^2}}{2} Now we need to fulfill 3 conditions :

  1. To get an integer y y , 112 3 x 2 112-3x^2 must be a perfect square

  2. For real values of y y , 112 3 x 2 112-3x^2 must be 0 \geq 0 .

  3. The maximum value of 112 3 x 2 112-3x^2 is 112 for any value of x x , so the perfect square must be < 112 < 112

0 112 3 x 2 < 112 \Rightarrow 0 \leq 112-3x^2 < 112 where 112 3 x 2 112-3x^2 is a perfect square.

Perfect squares within the range are 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 . Remember that x x must be an integer too! Let k = 112 3 x 2 k=112-3x^2 where k k is the perfect square listed, x 2 = 112 k 3 x^2 = \frac {112-k}{3} 112 k 112-k must be divisible by 3, the only k k 's that fulfill are 4 , 64 , 100 4, 64, 100 . Solving each of them we get x = ± 6 , ± 4 , ± 2 x = \pm 6, \pm 4, \pm 2 N = 6 2 4 2 2 2 = 2304 \Rightarrow |N| =|6^2*4^2*2^2|=2304 Last 3 digits is 304 304

Wait dude!? I think there is a mistake in this problem. Your explanation is good, but you forget that for every value of x \,x you will get 2 distinct values of y \,y . For example, if x = 2 \,x=-2 , then y 1 = ( 2 ) + 112 3 ( 2 ) 2 2 = 6 y_1=\frac{-(-2)+\sqrt{112-3(-2)^2}}{2}=6 and y 2 = ( 2 ) 112 3 ( 2 ) 2 2 = 4. y_2=\frac{-(-2)-\sqrt{112-3(-2)^2}}{2}=-4. Thus, the answer must be 416 \boxed{416} since N = ( 2 ) 2 ( 2 ) 2 ( 4 ) 2 ( 4 ) 2 ( 6 ) 2 ( 6 ) 2 = 5308416. |N|=\left|(-2)^2\cdot (2)^2\cdot (-4)^2\cdot (4)^2\cdot (-6)^2\cdot (6)^2\right|=5308416. I wanna claim my point back! And also give me extra points for the right answer. # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

Tunk-Fey Ariawan - 7 years, 4 months ago

Log in to reply

I've just plotted x 2 + y 2 + x y = 28 x^2+y^2+xy=28 in R and I get a geometric figure ellipse. That strongly indicates that for every value of x \,x , you will get 2 distinct values of y \,y .

Tunk-Fey Ariawan - 7 years, 4 months ago

Log in to reply

Yes u are right, but the question is asking for possible values of x x only, which means repeated ones are counted once only. Hope this clears up a lil of ur confusion here.

Edmund Heng - 7 years, 4 months ago

Log in to reply

@Edmund Heng But the equation itself, has 12 distinct combination integers as the solution. So, in my point of view, it has 12 values of x \,x .

Tunk-Fey Ariawan - 7 years, 4 months ago

Log in to reply

@Tunk-Fey Ariawan They are asking you the product of the "possible" values of "x", so this solution is absolutely correct.

Shourya Pandey - 7 years, 3 months ago

right...416 should be the answer

Alok Sharma - 7 years, 3 months ago

Agreed...I also did the same thing......

Biswadeep Sen - 7 years, 3 months ago

The solution is very simple, for every x you have two values of y , say {p, q} , such that-
x + p + q = 0 and x takes values {-6, -4, -2, 2, 4, 6} , so you can multiply each x and i think its 2304 not 5308416 .

Abhimanyu Singh - 7 years, 2 months ago

I missed on interpretation of values of x and got 5308416 =2304^2.

My solution:-

x 2 + y 2 = 28 x y ( x + y ) 2 = 28 + x y . S o R H S a l s o i s a s q u a r e . T o m a k e R H S a p e r f e c t s q u a r e , w e s h o u l d h a v e t h e x y v a l u e s g i v e n i n t h e c o l u m n 2 o f f o l l o w i n g t a b l e . O n l y i f , f o r a r o w w e g e t s a m e v a l u e i n c o l u m n 1 a n d 4 , x a n d y a r e t h e s o l u t i o n . S i n c e x a n d y a r e i n t e r c h a n g e a b l e , o r d e r d o e s n o t m a t t e r a n d w h a t i s t r u e f o r y i s a l s o t r u e f o r x . T w o f a c t o r s o f x y w e s e l e c t w e r e w h e r e x + y i s s m a l l e s t . O n l y t h i s p a i r m a y b e i n t h e s o l u t i o n s e t . I n o t h e r p a i r s L H S > R H S . W e W a n t W e g e t R e m a r k s ( x + y ) 2 x y x , y ( x + y ) 2 1 27 ± 3 , 9 36 4 24 ± 4 , 6 4 G o o d . . . x = ± 4 a n d 6 9 19 ± 1 , 19 1 8 2 16 12 ± 2 , 6 16 G o o d . . . x = ± 2 a n d 6 25 3 ± 1 , 3 4 36 8 ± 2 , ± 4 36 G o o d . . . x = ± 2 a n d ± 4 49 21 ± 3 , ± 7 100 B i g g e r t h a n 49 L H S > R H S p r o d u c t o f P O S S I B L E x = ( 2 ( 2 ) ) ( 4 ( 4 ) ) ( 6 6 ) = 2304 S o N = 304 x^2+y^2=28-xy~~\implies~~(x+y)^2=28+xy.~~So~RHS~also~is~a~square.\\ ~~\\ To~ make~RHS~a~perfect~square,~~we~should~have~the~xy~values~given~in~the~column~2~of~following~table. \\ Only~if,~for~a~row~we~ get~same~value~in~column~1~and~4,~x~and~y~are~the~solution. \\ Since~x~and~y~are~interchangeable, ~order~does~not~matter~and~what~is~true~for~y~is~also~true~for~x. \\ Two~factors~of ~xy~~we~select~were~where~x+y~is~smallest.~Only~this~ pair~may~be~in~the~solution~set.~In~other~pairs~LHS~> ~RHS.\\ ~~~\\ ~~~\\ \begin{array}{c|c|c|c||c|||c}We~ Want & & & We~ get & Remarks\\ (x+y)^2 & xy & x~~,~~ y & (x+y)^2 & \\ \hline 1 & -27 & \pm 3 ,~\mp 9 & 36 &\\ 4 & -24 & \pm 4 ,~\mp 6 & 4 & Good...x=\pm~4~~and~~\mp~6\\ 9 & -19 & \pm 1 ,~\mp 19 & 18^2 &\\ 16 & -12 & \pm 2 ,~\mp 6 & 16 &Good...x=\pm~2~~and~~\mp~6\\ 25 & -3 & \pm 1 ,~\mp 3 & 4&\\ 36 & 8 &\pm 2 , ~\pm 4& 36 &Good...x=\pm~2~~and~~\pm~4\\ 49 & 21 & \pm 3 ,~\pm 7 &100 &\\ Bigger~than~49 & & & & LHS~>~RHS\\ \end{array}\\ ~~~\\ ~~~\\ \therefore~product~of~POSSIBLE~x~=~(2*(-2))*(4*(-4))* (-6*6)=~-2304\\ So~~|N|=\Large~~\color{#D61F06}{304}

Niranjan Khanderia - 3 years, 1 month ago
Jeffrey Robles
Dec 16, 2013

Let x x and y y be the roots of a quadratic equation.

Also, let s = x + y p = x y s=x+y \\ p=xy

If x x and y y are integers, then s s and p p are integers too.

Rewriting the given relationship, we have p = s 2 28 p=s^2-28 Then, the quadratic equation whose roots are x x and y y is : k 2 s k + ( s 2 28 ) = 0 : \\ \qquad \qquad \qquad \qquad k^2-sk+(s^2-28)=0 .

We solve for the roots of such quadratic equation k = s ± s 2 4 s 2 + 112 2 = s ± 112 3 s 2 2 \qquad \qquad \quad \qquad \qquad k=\frac{s\pm \sqrt{s^2-4s^2+112}}{2}=\frac{s\pm \sqrt{112-3s^2}}{2}

W.L.O.G, consider x > y x = s + 112 3 s 2 2 ; y = s 112 3 s 2 2 112 3 s 2 0 s { 6 , 5 , 4 , , 4 , 5 , 6 } x>y\\ \quad x=\frac{s + \sqrt{112-3s^2}}{2}; \quad y=\frac{s - \sqrt{112-3s^2}}{2}\\ \quad 112-3s^2\geq0 \\ \quad s \in \{-6,-5,-4,\ldots,4,5,6\}

Substituting possible values of s s in the expression for x x and y y , we see that x x and y y are both integers only when s = ± 2 , ± 4 , ± 6 s=\pm2,\pm4,\pm6 .

When s = 2 , x = 6 , y = 4 s = 2 , x = 4 , y = 6 s = 4 , x = 6 , y = 2 s = 4 , x = 2 , y = 6 s = 6 , x = 4 , y = 2 s = 6 , x = 2 , y = 4 s=2, x=6, y=-4 \\ s=-2, x=4, y=-6 \\ s=4, x=6, y=-2 \\ s=-4, x=2, y=-6 \\ s=6, x=4, y=2 \\ s=-6, x=-2, y=-4

Hence there are 6 possible values for x x , namely: ± 2 , ± 4 , ± 6 \pm2,\pm4,\pm6 . N = 2 2 4 2 6 2 = 2304 |N|=|-2^2 \cdot -4^2 \cdot -6^2|=2304

you considered x > y x>y but without this you get 6 new results, just by swapping x and y. since x>y hasn't been stated, shouldn't we consider them too?

Pouya Hamadanian - 7 years, 5 months ago

Log in to reply

Yes, thanks. I forgot to mention that, but such case should be considered indeed. Without considering that, one would obtain only three possible values for x x .

Jeffrey Robles - 7 years, 5 months ago

But, when x=0, y=±√28 Like that, you get real value of y for x=±1,±3,±5 also. Substitute and check. You won't get for integer x>6 or x<-6 because then the quadratic in y so formed won't have real solutions.

Meenakshi Janardanan - 7 years, 5 months ago

Dude!! I think there is a mistake in this problem. See my explanation above! Jeez! I wanna claim my point back! And also give me extra points for the right answer.

Tunk-Fey Ariawan - 7 years, 4 months ago
Adit Mohan
Jan 16, 2014

possible solutions are (-2,6),(6,-2),(-6,2),(2,-6),(2,4),(4,2),(-2,-4),(-4,-2).
different values of x are -2,6,-6,2,4,-4.
product = -2304 last three digits of |-2304|= 304

Israel Smith
Dec 19, 2013

Anyone?

Bharat Karmarkar
Dec 17, 2013

step 1: write table of squares. Select x and y integers. compute the value of x^2 + y^2 + xy step 2: Get the result

The expression can be written as x 2 + x y + y 2 = 28 x^{2} + xy + y^{2} = 28 . Note that 5 x , y 5 -5 \leq x, y \leq 5 . If you check this cases in terms of y y (looking for the possibilities for x x ), you will get the following quadratic polinomials in x x :

x 2 ± 5 x 3 x^{2} ± 5x - 3

x 2 ± 4 x 12 x^{2} ± 4x - 12

x 2 ± 3 x 19 x^{2} ± 3x - 19

x 2 ± 2 x 24 x^{2} ± 2x - 24

x 2 ± x 27 x^{2} ± x - 27

x 2 x^{2}

The only ones with integer roots are the second and the fourth pairs ( 3 3 rd , 4 4 th , 7 7 th and 8 8 th ). The roots are ± 6 ±6 , ± 4 ±4 and ± 2 ±2 , whose product is 2304 -2304 . Thats why the last three digits of N |N| are 304 \boxed {304} .

Mistake: 6 x , y 6 -6 \leq x, y \leq 6 and not 5 -5 and 5 5 . This gives a new pair: x 2 ± 6 x + 8 x^{2} \pm 6x + 8 . Fortunately, this doesn't has an integer root. Sorry! :D

Diego E. Nazario Ojeda - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...