Sum of squares! Ha!

Find all integers a Z a \in \mathbb{Z} such that a 2 + 4 2 a + 1 \large{\dfrac{a^2 +4}{2a + 1}} is also an integer.

Input your answer as the sum of the squares of all possible values of a \boxed{a} .


The answer is 146.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First start with dividing polynomial

a 2 + 4 2 a + 1 = a 2 1 4 + 17 / 4 2 a + 1 \displaystyle \frac{a^{2}+4}{2a+1}=\frac{a}{2}-\frac{1}{4}+\frac{17/4}{2a+1}

let's this fraction to be an integer

a 2 + 4 2 a + 1 = n = a 2 1 4 + 17 / 4 2 a + 1 \displaystyle \frac{a^{2}+4}{2a+1}=n=\frac{a}{2}-\frac{1}{4}+\frac{17/4}{2a+1}

4 n = 2 a 1 + 17 2 a + 1 \displaystyle 4n=2a-1+\frac{17}{2a+1}

hence this expression will be an integer if 17 is divisible by 2 a + 1 2a+1

So 2 a + 1 = ± 1 , ± 17 \displaystyle 2a+1=\pm 1,\pm 17

a = 0 , 1 , 8 , 9 a=0,-1,8,-9

0 2 + ( 1 ) 2 + 8 2 + ( 9 ) 2 = 146 0^{2}+(-1)^{2}+8^{2}+(-9)^{2}=\boxed{146}

Great use of the Dividing Polynomial! @คลุง แจ็ค Upvoted!

P.s. For a better solution do add in how you used the dividing polynomial

Sualeh Asif - 5 years, 11 months ago

Nice. Up voted. Simple approach.

Niranjan Khanderia - 5 years, 11 months ago
Kazem Sepehrinia
Jun 27, 2015

2 a + 1 a ( 2 a + 1 ) 2 ( a 2 + 4 ) = a 8 2 a + 1 2 a + 1 2 ( a 8 ) = 17 2 a + 1 = ± 1 , ± 17 2a+1| a(2a+1)-2(a^2+4)=a-8 \\ 2a+1| 2a+1-2(a-8)=17 \\ 2a+1=\pm1, \pm 17 So, a = 9 , 1 , 0 , 8 a=-9, -1, 0, 8 .

Very good approach. Up voted.. I learn a new method today. Thanks. Probably you may explain this method in detail for others to understand. I took time to understand .

Niranjan Khanderia - 5 years, 11 months ago

Can you explain this in more detail?

Shashank Rammoorthy - 5 years, 11 months ago

Log in to reply

2 a + 1 a ( 2 a + 1 ) 2 ( a 2 + 4 ) = a 8 2 a + 1 2 a + 1 2 ( a 8 ) = 17 2 a + 1 = ± 1 , ± 17 Multiple of(2a+1) is used to eliminate a 2 f r o m ( a 2 + 4 ) . I think this may be the normal way in Number Theory 2a+1| a(2a+1)-2(a^2+4)=a-8 \\ 2a+1| 2a+1-2(a-8)=17 \\ 2a+1=\pm1, \pm 17\\\text{Multiple of(2a+1) is used to eliminate } a^2~ from ~ (a^2+4).\\\text{I think this may be the normal way in Number Theory}

Niranjan Khanderia - 5 years, 11 months ago

Hi shashank,

If integer x x is a common divisor of y y and z z , then it divides every linear combination of y y and z z . In other words if x y x|y and x z x|z then x m y + n z x|my+nz for arbitrary integers m m and n n .

Now for this problem let x = 2 a + 1 x=2a+1 , now we must have 2 a + 1 a 2 + 4 2a+1|a^2+4 , so let y = a 2 + 4 y=a^2+4 and 2 a + 1 2 a + 1 2a+1|2a+1 , so let z = 2 a + 1 z=2a+1 . I choose m m and n n in a way that degree of a a decreases on the RHS of relations. I repeat this procedure to reach a number on the RHS. Rest is easy. I Hope I'm clear.

Kazem Sepehrinia - 5 years, 10 months ago

Log in to reply

sir how do u know that we have to write a 2 + 4 2 a + 1 a s a 2 1 4 + 17 / 4 2 a + 1 \displaystyle \frac{a^{2}+4}{2a+1}as\frac{a}{2}-\frac{1}{4}+\frac{17/4}{2a+1} @Kazem Sepehrinia

sakshi rathore - 5 years, 10 months ago

Log in to reply

@Sakshi Rathore Hi,

I think you should ask @คลุง แจ็ค

Kazem Sepehrinia - 5 years, 10 months ago

@Sakshi Rathore a 2 + 4 = 1 2 ( 2 a 2 + a a ) + 4 = 1 2 ( 2 a 2 + a ) 1 2 1 2 ( 2 a + 1 1 ) + 4 = 1 2 ( 2 a 2 + a ) 1 2 1 2 ( 2 a + 1 ) 1 2 1 2 ( 1 ) + 4 = 1 2 a ( 2 a + 1 ) 1 4 ( 2 a + 1 ) + 1 4 + 4 a 2 + 4 2 a + 1 = 1 2 a ( 2 a + 1 ) 1 4 ( 2 a + 1 ) + 1 4 + 4 2 a + 1 = 1 2 a 1 4 + 17 / 4 2 a + 1 a^2+4=\dfrac 1 2 *(2a^2+a -a)+4\\ =\dfrac 1 2 *(2a^2+a) -\dfrac 1 2 *\frac 1 2(2a+1-1)+4\\ =\dfrac 1 2 *(2a^2+a) -\dfrac 1 2 *\frac 1 2 *(2a+1)-\dfrac 1 2 *\frac 1 2 *(-1)+4\\ =\dfrac 1 2 *a*(2a+1) -\dfrac 1 4 *(2a+1)+\dfrac 1 4+4\\ \therefore~\dfrac{a^2+4}{2a+1}\\ =\large \dfrac {\frac 1 2 *a*(2a+1) -\frac 1 4 *(2a+1)+\frac 1 4+4}{2a+1}\\ =\dfrac 1 2 *a-\dfrac 1 4 +\dfrac{17/4}{2a+1}

Niranjan Khanderia - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...