Sum to infinity (2)

1 + ( 1 3 ) + ( 1 3 3 6 ) + ( 1 3 3 6 5 9 ) + ( 1 3 3 6 5 9 7 12 ) + = ? 1 + \left( \dfrac 13 \right) + \left( \dfrac 13 \cdot \dfrac 36 \right) + \left( \dfrac 13 \cdot \dfrac 36 \cdot \dfrac 59 \right) + \left( \dfrac 13 \cdot \dfrac 36 \cdot \dfrac 59 \cdot \dfrac{7}{12} \right) + \cdots = \, ?

Find the value of the closed form of the above series to 3 decimal places.


The answer is 1.732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wikis .- fractional binomial theorem and Negative binomial theorem

The power series of ( 1 2 x ) 1 2 = 1 1 2 x (1 - 2x)^{\frac{-1}{2}} = \frac{1}{\sqrt{1 - 2x}} with x < 1 / 2 |x| < 1/2 is : 1 + x + 3 x 2 2 + 5 x 3 2 + 35 x 4 8 + 63 x 5 8 + o ( x 5 ) = k = 0 ( 1 / 2 k ) ( 2 x ) k = 1 + x + \frac{3x^2}{2} + \frac{5x^3}{2} + \frac{35x^4}{8} + \frac{63x^5}{8} + o(x^5) = \displaystyle \sum_{k = 0}^{\infty} {-1/2 \choose k} (-2x)^k = = 1 + ( 1 / 2 ) ( 2 x ) + ( 1 / 2 ) ( 3 / 2 ) 2 ! ( 2 x ) 2 + ( 1 / 2 ) ( 3 / 2 ) ( 5 / 2 ) 3 ! ( 2 x ) 3 + . . . . =1 + (-1/2)\cdot(-2x) + \frac{(-1/2)\cdot (-3/2)}{2!} (-2x)^2 + \frac{(-1/2)\cdot(-3/2)\cdot(-5/2)}{3!}(-2x)^3 +.... Now substituing x = 1 / 3 x = 1/3 we get 1 + 1 3 + 1 3 3 6 + 1 3 5 3 6 9 + . . . = 1 + \frac{1}{3} + \frac{1\cdot 3}{3\cdot 6} + \frac{1\cdot 3\cdot 5}{3\cdot 6\cdot 9} + ... = ( 1 2 1 3 ) 1 2 = 1 1 2 1 3 = 3 (1 - 2\cdot \frac{1}{3})^{\frac{-1}{2}} = \frac{1}{\sqrt{1 - 2\cdot\frac{1}{3}}} = \sqrt{3}

Details.-

3 = 3 1 1 ! , 3 6 = 3 2 2 ! , 3 6 9 = 3 3 3 ! . . . 3 = 3^1 \cdot 1!, \quad \\ 3 \cdot 6 = 3^2 \cdot 2!, \quad \\3 \cdot 6 \cdot 9 = 3^3 \cdot 3!...

Note.- This problem is exactly equal to this

Oh. I didn't know this problem was posted earlier by someone else.

Tapas Mazumdar - 4 years, 4 months ago

Log in to reply

Don't worry, It happens many times... Now, I'm writing a solution for your first part, give me some time , please....

Guillermo Templado - 4 years, 4 months ago

Log in to reply

Is that one posted earlier as well. I don't hope so.

P.S. Take your time to post your solution. No rush. :)

Tapas Mazumdar - 4 years, 4 months ago

Log in to reply

@Tapas Mazumdar I don't know, but I don't think so...

Detail.- if α C \alpha \in \mathbb{C} and n Z + = { 1 , 2 , 3 , . . . } n \in \mathbb{Z}^+ = \{1,2,3,...\} then ( α n ) = α ( α 1 ) ( α n + 1 ) n ! {\alpha \choose n} = \frac{\alpha \cdot (\alpha - 1) \cdot \cdot \cdot (\alpha - n + 1)}{n!} and ( α 0 ) = 1 {\alpha \choose 0} = 1

Guillermo Templado - 4 years, 4 months ago

Log in to reply

@Guillermo Templado Yes. That result was surprising to me at first because we were taught combinations(the M C N ^M C_N type) as constrained to the non-negative integer class of numbers. But then I realized that binomials used the same idea to expand its parameters to the complex numbers.

Tapas Mazumdar - 4 years, 4 months ago

The general term is can be simplified as

( 2 n n ) ( x ) n \dbinom{2n}{n}(x)^n ,where x = 1 / 6 x=1/6 ,thus the required sum is

0 ( 2 n n ) ( x ) n \sum_0^\infty \dbinom{2n}{n}(x)^n

now it is interesting to note that,

( 1 / 2 n ) = ( 1 / 2 ) ( 1 / 2 1 ) ( 1 / 2 2 ) ( 1 / 2 ( n 1 ) ) n ! = ( 1 ) n 2 n ( 1 ) ( 3 ) ( 5 ) ( 2 n 1 ) n ! = ( 1 ) n 2 n ( 1 ) ( 3 ) ( 5 ) ( 2 n 1 ) n ! 2 n n ! 2 n n ! = ( 1 ) n 4 n ( 2 n n ) . \begin{aligned} {-1/2\choose n}&=&{(-1/2)(-1/2-1)(-1/2-2)\cdots(-1/2-(n-1))\over n!}\cr &=&{(-1)^n\over 2^n} {(1)(3)(5)\cdots(2n-1)\over n!}\cr &=&{(-1)^n\over 2^n} {(1)(3)(5)\cdots(2n-1)\over n!}\cdot{2^n n!\over 2^n n!}\cr &=&{(-1)^n\over 4^n} {2n\choose n}. \end{aligned}

thus the binomial expansion of ( 1 4 x ) 1 2 = 0 ( 2 n n ) ( x ) n (1-4x)^{\tfrac{-1}{2}}=\sum_0^\infty \dbinom{2n}{n}(x)^n

thus plugging in x = 1 / 6 x=1/6 we get,

0 ( 2 n n ) ( 1 6 ) n = ( 1 4 ( 1 6 ) ) 1 2 = 3 \sum_0^\infty \dbinom{2n}{n}(\cfrac{1}{6})^n=(1-4(\cfrac{1}{6}))^{\tfrac{-1}{2}}=\boxed{\sqrt{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...