Summation and Summation

Calculus Level 4

Let

f ( s ) = n = 0 1 s n f(s) = \displaystyle \sum_{n=0}^\infty \frac {1}{s^n} .

If the value of

s = 2 10 f ( s ) \displaystyle \sum_{s=2}^{10} f(s)

can be represented as A B \frac {A}{B} where A A and B B are positive, coprime integers, find the value of A + B A + B .


The answer is 32329.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mathh Mathh
Jul 5, 2014

f ( s ) = n = 0 1 s n = 1 1 1 s = s s 1 s = 2 10 f ( s ) = s = 2 10 s s 1 = 2 1 + 3 2 + 4 3 + + 10 9 = 29809 2520 answer = 29809 + 2520 = 32329 \displaystyle f(s)=\sum_{n=0}^\infty\frac{1}{s^n}=\cfrac{1}{1-\cfrac{1}{s}}=\frac{s}{s-1}\implies \sum_{s=2}^{10}f(s)=\sum_{s=2}^{10}\frac{s}{s-1}=\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+\cdots+\frac{10}{9}=\frac{29809}{2520}\implies \text{answer}=29809+2520=\boxed{32329}

Yep. Solved it exactly like this.

Seth Lovelace - 6 years, 5 months ago

What if s<0?

U Z - 6 years, 5 months ago

Log in to reply

Do you need to care about it? You have to solve it for s from 2 to 10... And s being negative or positive doesn't matter in @mathh mathh 's solution

Pranjal Jain - 6 years, 5 months ago

Log in to reply

Sorry i mean to say 0<s<1.

f ( s ) = 1 ( 1 s n 1 1 s 1 f(s) = \dfrac{1(\dfrac{1}{s^n} - 1}{\dfrac{1}{s} - 1} , now if 0<s<1, then f(s)=, the answer will vary

What do you think @Pranjal Jain @Seth Lovelace

U Z - 6 years, 5 months ago

Log in to reply

@U Z if 0<s<1,f(S) will diverge to infinity and a function f(s) can't be defined

mudit bansal - 6 years, 5 months ago
Chew-Seong Cheong
Dec 30, 2014

A slightly more algebraic solution.

s = 2 10 f ( s ) = s = 2 10 n = 0 1 s n = s = 2 10 1 1 1 s = s = 2 10 s s 1 = s = 1 9 s + 1 s \displaystyle \sum _{s=2} ^{10} {f(s)} = \sum _{s=2} ^{10} {\sum _{n=0} ^\infty \frac{1}{s^n} } = \sum _{s=2} ^{10} {\frac {1}{1-\frac{1}{s}}} = \sum _{s=2} ^{10} {\frac {s}{s-1}} = \sum _{s=1} ^{9} {\frac {s+1}{s}}

= s = 1 9 ( 1 + 1 s ) = s = 1 9 1 + s = 1 9 1 s \displaystyle = \sum _{s=1} ^{9} {\left( 1 + \frac {1}{s} \right)} = \sum _{s=1} ^{9} {1 } + \sum _{s=1} ^{9} {\frac {1}{s}}

= 9 + ( 1 1 + 1 2 + 1 4 + 1 8 ) + ( 1 3 + 1 6 + 1 9 ) + 1 5 + 1 7 \displaystyle = 9 + \left( \frac {1}{1} + \frac {1}{2} + \frac {1}{4} + \frac {1}{8} \right) + \left( \frac {1}{3} + \frac {1}{6} + \frac {1}{9} \right) + \frac {1}{5} + \frac {1}{7}

= 9 + 1 ( 1 2 ) 4 1 1 2 + 1 3 ( 1 1 + 1 2 + 1 3 ) + 1 5 + 1 7 \displaystyle = 9 + \frac {1-\left( \frac{1}{2}\right)^4} {1-\frac{1}{2}} + \frac {1}{3} \left( \frac {1}{1} + \frac {1}{2} + \frac {1}{3} \right) + \frac {1}{5} + \frac {1}{7}

= 9 + 15 8 + 11 18 + 12 35 = 22680 + 4725 + 1540 + 864 2520 = 29809 2520 = A B \displaystyle = 9 + \frac {15}{8} + \frac {11}{18} + \frac {12}{35} = \frac {22680+4725+1540+864} {2520} = \frac {29809} {2520} = \frac {A}{B}

A + B = 29809 + 2520 = 32329 \Rightarrow A+B = 29809+2520= \boxed{32329}

done exactly these steps.

Trishit Chandra - 6 years, 5 months ago
Aditya Tiwari
Nov 5, 2014

Large calculation !!!!!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...