Summer of 69!

Calculus Level 4

( x + x 2 + 1 ) 69 d x \large \int { { (x+\sqrt { { x }^{ 2 }+1 } ) }^{ 69 } } dx

If the indefinite integral above is of the form:

a b [ ( x + x 2 + 1 ) c c + ( x + x 2 + 1 ) d d ] + α \large \frac { a }{ b } \left[ \frac { { (x+\sqrt { { x }^{ 2 }+1 } ) }^{ c } }{ c } +\frac { { (x+\sqrt { { x }^{ 2 }+1 } ) }^{ d } }{ d } \right] +\alpha

where α \alpha is constant of integration.

c > d c > d

Find a + b + c d a+b+c-d .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

For the sake of variety, I tried this:

Let t = ln ( x + x 2 + 1 ) t = \ln(x + \sqrt{x^2 + 1})

d t = 1 x + x 2 + 1 ( 1 + x x 2 + 1 ) d x = 1 x 2 + 1 d x \Rightarrow dt = \dfrac{1}{x + \sqrt{x^2 + 1}} \left(1 + \dfrac{x}{\sqrt{x^2 + 1}} \right) dx = \dfrac{1}{\sqrt{x^2 + 1}} dx

t = ln ( x + x 2 + 1 ) = ln ( x 2 + 1 x ) -t = -\ln(x + \sqrt{x^2 + 1}) = \ln(\sqrt{x^2 + 1} - x)

e t = x + x 2 + 1 \Rightarrow e^t = x + \sqrt{x^2 + 1}

e t = x + x 2 + 1 \Rightarrow e^{-t} = -x + \sqrt{x^2 + 1}

x 2 + 1 = 1 2 ( e t + e t ) d t 1 2 ( e t + e t ) = d x \Rightarrow \sqrt{x^2 + 1} = \dfrac{1}{2}(e^t + e^{-t}) \Rightarrow dt \dfrac{1}{2}(e^t + e^{-t}) = dx

I = 1 2 e 69 t ( e t + e t ) d t = 1 2 e 70 t d t + 1 2 e 68 t d t I = \displaystyle \dfrac{1}{2} \int e^{69t} ( e^t + e^{-t} ) dt = \dfrac{1}{2}\int e^{70t} dt + \dfrac{1}{2} \int e^{68t} dt

I = 1 2 ( e 70 t 70 + e 68 t 68 ) + α I = \dfrac{1}{2} \left(\dfrac{e^{70t}}{70} + \dfrac{e^{68t}}{68} \right) + \alpha

I = 1 2 ( ( x + x 2 + 1 ) 70 70 + ( x + x 2 + 1 ) 68 68 ) + α I = \dfrac{1}{2} \left(\dfrac{(x+\sqrt{x^2 + 1})^{70}}{70} + \dfrac{(x+\sqrt{x^2 + 1})^{68}}{68} \right) + \alpha

a = 1 , b = 2 , c = 70 , d = 68 a + b + c d = 5 a = 1 , b = 2 , c = 70 , d = 68 \Rightarrow a + b + c - d = \boxed{5}

Moderator note:

Nice! That's an interesting approach. Thanks for the variety!

Good method +1.

Aditya Kumar - 5 years, 10 months ago

Log in to reply

Thanks. Cheers!!

Vishwak Srinivasan - 5 years, 10 months ago

Log in to reply

U r in which class??

Aditya Kumar - 5 years, 10 months ago

Log in to reply

@Aditya Kumar Will start attending IIT - Hyderabad this year. Chemical Engineering.

Vishwak Srinivasan - 5 years, 10 months ago

Log in to reply

@Vishwak Srinivasan Awsome! IIT after all is awsome! What was ur rank??

Aditya Kumar - 5 years, 10 months ago

Log in to reply

@Aditya Kumar Bad. 4637.

Vishwak Srinivasan - 5 years, 10 months ago

Log in to reply

@Vishwak Srinivasan That's pretty good!

Aditya Kumar - 5 years, 10 months ago
Aditya Kumar
Apr 30, 2015

I = ( x + x 2 + 1 ) n d x l e t x + x 2 + 1 = t a n d ( 1 + x x 2 + 1 ) d x = d t I = 1 2 t n 2 ( t 2 + 1 ) d t O n s o l v i n g , I = 1 2 [ ( x + x 2 + 1 ) n + 1 n + 1 + ( x + x 2 + 1 ) n 1 n 1 ] + α o n s u b s t i t u t i n g v a l u e s , a + b + c d = 1 + 2 + 70 68 = 5 I\quad =\quad \int { { (x+\sqrt { { x }^{ 2 }+1 } ) }^{ n } } dx\\ \\ let\quad x+\sqrt { { x }^{ 2 }+1 } \quad =\quad t\\ and\quad (1+\frac { x }{ \sqrt { { x }^{ 2 }+1 } } )dx\quad =\quad dt\\ \therefore \quad I\quad =\quad \frac { 1 }{ 2 } \int { { t }^{ n-2 } } ({ t }^{ 2 }+1)dt\\ On\quad solving,\\ I\quad =\quad \frac { 1 }{ 2 } \left[ \frac { { (x+\sqrt { { x }^{ 2 }+1 } ) }^{ n+1 } }{ n+1 } +\frac { { (x+\sqrt { { x }^{ 2 }+1 } ) }^{ n-1 } }{ n-1 } \right] +\alpha \\ on\quad substituting\quad values,\\ a+b+c-d\quad =\quad 1+2+70-68\quad =\quad 5

Moderator note:

Great work!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...