Summing a polynomial

Algebra Level 4

If f ( n ) = n 4 10 n 3 + 35 n 2 50 n + 24 f(n) = n^4-10n^3+35n^2-50n+24 , calculate 1 19 ( n = 0 99 f ( n ) 5 ) \displaystyle \frac{1}{19} \left(\sum_{n=0}^{99} f(n) - 5 \right) .


Hint: f ( 100 ) = 90345024 f(100) = 90345024


The answer is 90345025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Patrick Corn
May 9, 2019

Since f ( n ) = ( n 1 ) ( n 2 ) ( n 3 ) ( n 4 ) , f(n) = (n-1)(n-2)(n-3)(n-4), we have n = 0 99 f ( n ) = 24 + n = 5 99 f ( n ) = 24 + 24 n = 5 99 f ( n ) / 24 = 24 + 24 n = 5 99 ( n 1 4 ) . \sum_{n=0}^{99} f(n) = 24 + \sum_{n=5}^{99} f(n) = 24 + 24\sum_{n=5}^{99} f(n)/24 = 24 + 24\sum_{n=5}^{99} \binom{n-1}{4}. It is easy to show by induction (the "diagonal Pascal triangle" identity) that n = k + 1 ( n 1 k ) = ( k + 1 ) . \sum_{n=k+1}^{\ell} \binom{n-1}{k} = \binom{\ell}{k+1}. So we get n = 0 99 f ( n ) = 24 + 24 ( 99 5 ) , \sum_{n=0}^{99} f(n) = 24 + 24 \binom{99}{5}, so 1 19 ( n = 0 99 f ( n ) 5 ) = 1 19 ( 19 + 24 ( 99 5 ) ) = 1 + 24 19 99 98 97 96 95 5 24 = 1 + ( 99 98 97 96 ) = 1 + f ( 100 ) = 90345025. \frac1{19} \left( \sum_{n=0}^{99} f(n) - 5 \right) = \frac1{19} \left( 19 + 24 \binom{99}{5} \right) = 1 + \frac{24}{19} \frac{99 \cdot 98 \cdot 97 \cdot 96 \cdot 95}{5 \cdot 24} = 1 + (99 \cdot 98 \cdot 97 \cdot 96) = 1 + f(100) = 90345025.

Alex Burgess
May 2, 2019

f ( n ) = ( n 1 ) ( n 2 ) ( n 3 ) ( n 4 ) = 24 [ ( n 4 ) ( n 3 ) + ( n 2 ) ( n 1 ) + ( n 0 ) ] f(n) = (n-1)(n-2)(n-3)(n-4) = 24[ \binom{n}{4} - \binom{n}{3} + \binom{n}{2} - \binom{n}{1} + \binom{n}{0}]

OR

f ( n ) = n ( n 3 10 n 2 + 35 n 50 ) + 24 f(n) = n(n^3-10n^2+35n-50)+24

= n [ ( n 1 ) ( n 2 9 n + 26 ) 24 ] + 24 = n[ (n-1)(n^2-9n+26) -24] + 24

= n [ ( n 1 ) [ ( n 2 ) ( n 7 ) + 12 ] 24 ] + 24 = n[ (n-1)[ (n-2)(n-7) +12] -24] +24

= n [ ( n 1 ) [ ( n 2 ) [ ( n 3 ) 4 ] + 12 ] 24 ] + 24 = n[ (n-1)[ (n-2)[ (n-3) -4] +12] -24] +24

= n ( n 1 ) ( n 2 ) ( n 3 ) 4 n ( n 1 ) ( n 2 ) + 12 n ( n 1 ) 24 n + 24 = n(n-1)(n-2)(n-3) -4n(n-1)(n-2) + 12n(n-1) - 24n + 24

= 24 [ ( n 4 ) ( n 3 ) + ( n 2 ) ( n 1 ) + ( n 0 ) ] = 24[ \binom{n}{4} - \binom{n}{3} + \binom{n}{2} - \binom{n}{1} + \binom{n}{0}] .


Hence,

n = 0 m f ( n ) = 24 [ ( m + 1 5 ) ( m + 1 4 ) + ( m + 1 3 ) ( m + 1 2 ) + ( m + 1 1 ) ] \sum_{n=0}^{m} f(n) = 24[ \binom{m+1}{5} - \binom{m+1}{4} + \binom{m+1}{3} - \binom{m+1}{2} + \binom{m+1}{1}]

= 24 ( m + 1 5 ) f ( m + 1 ) + 24 = 24 \binom{m+1}{5} - f(m+1) + 24 .

Therefore,

n = 0 99 f ( n ) = 24 100 99 98 97 96 120 f ( 100 ) + 24 \sum_{n=0}^{99} f(n) = 24 \frac{100*99*98*97*96}{120} - f(100) + 24

= 20 ( 99 98 97 96 ) f ( 100 ) + 24 = 19 f ( 100 ) + 24 = 20 * (99*98*97*96) - f(100) + 24 = 19 * f(100) +24 .

Finally,

( n = 0 99 f ( n ) ) 5 19 = 90345024 + 1 = 90345025 \frac{(\sum_{n=0}^{99} f(n)) - 5}{19} = 90345024 + 1 = 90345025 .

1 19 ( n = 0 99 ( f ( n ) ) 5 ) 90345025 \frac{1}{19} \left(\sum _{n=0}^{99}\left(f(n)\right)-5\right) \Rightarrow 90345025

( 0 + 0 + 0 + 0 + 24 ) + ( 1 + 10 + 35 + 50 + 24 ) + ( 16 + 80 + 140 + 100 + 24 ) + ( 81 + 270 + 315 + 150 + 24 ) + ( 256 + 640 + 560 + 200 + 24 ) + ( 625 + 1250 + 875 + 250 + 24 ) + ( 1296 + 2160 + 1260 + 300 + 24 ) + ( 2401 + 3430 + 1715 + 350 + 24 ) + ( 4096 + 5120 + 2240 + 400 + 24 ) + ( 6561 + 7290 + 2835 + 450 + 24 ) + ( 10000 + 10000 + 3500 + 500 + 24 ) + ( 14641 + 13310 + 4235 + 550 + 24 ) + ( 20736 + 17280 + 5040 + 600 + 24 ) + ( 28561 + 21970 + 5915 + 650 + 24 ) + ( 38416 + 27440 + 6860 + 700 + 24 ) + ( 50625 + 33750 + 7875 + 750 + 24 ) + ( 65536 + 40960 + 8960 + 800 + 24 ) + ( 83521 + 49130 + 10115 + 850 + 24 ) + ( 104976 + 58320 + 11340 + 900 + 24 ) + ( 130321 + 68590 + 12635 + 950 + 24 ) + ( 160000 + 80000 + 14000 + 1000 + 24 ) + ( 194481 + 92610 + 15435 + 1050 + 24 ) + ( 234256 + 106480 + 16940 + 1100 + 24 ) + ( 279841 + 121670 + 18515 + 1150 + 24 ) + ( 331776 + 138240 + 20160 + 1200 + 24 ) + ( 390625 + 156250 + 21875 + 1250 + 24 ) + ( 456976 + 175760 + 23660 + 1300 + 24 ) + ( 531441 + 196830 + 25515 + 1350 + 24 ) + ( 614656 + 219520 + 27440 + 1400 + 24 ) + ( 707281 + 243890 + 29435 + 1450 + 24 ) + ( 810000 + 270000 + 31500 + 1500 + 24 ) + ( 923521 + 297910 + 33635 + 1550 + 24 ) + ( 1048576 + 327680 + 35840 + 1600 + 24 ) + ( 1185921 + 359370 + 38115 + 1650 + 24 ) + ( 1336336 + 393040 + 40460 + 1700 + 24 ) + ( 1500625 + 428750 + 42875 + 1750 + 24 ) + ( 1679616 + 466560 + 45360 + 1800 + 24 ) + ( 1874161 + 506530 + 47915 + 1850 + 24 ) + ( 2085136 + 548720 + 50540 + 1900 + 24 ) + ( 2313441 + 593190 + 53235 + 1950 + 24 ) + ( 2560000 + 640000 + 56000 + 2000 + 24 ) + ( 2825761 + 689210 + 58835 + 2050 + 24 ) + ( 3111696 + 740880 + 61740 + 2100 + 24 ) + ( 3418801 + 795070 + 64715 + 2150 + 24 ) + ( 3748096 + 851840 + 67760 + 2200 + 24 ) + ( 4100625 + 911250 + 70875 + 2250 + 24 ) + ( 4477456 + 973360 + 74060 + 2300 + 24 ) + ( 4879681 + 1038230 + 77315 + 2350 + 24 ) + ( 5308416 + 1105920 + 80640 + 2400 + 24 ) + ( 5764801 + 1176490 + 84035 + 2450 + 24 ) + ( 6250000 + 1250000 + 87500 + 2500 + 24 ) + ( 6765201 + 1326510 + 91035 + 2550 + 24 ) + ( 7311616 + 1406080 + 94640 + 2600 + 24 ) + ( 7890481 + 1488770 + 98315 + 2650 + 24 ) + ( 8503056 + 1574640 + 102060 + 2700 + 24 ) + ( 9150625 + 1663750 + 105875 + 2750 + 24 ) + ( 9834496 + 1756160 + 109760 + 2800 + 24 ) + ( 10556001 + 1851930 + 113715 + 2850 + 24 ) + ( 11316496 + 1951120 + 117740 + 2900 + 24 ) + ( 12117361 + 2053790 + 121835 + 2950 + 24 ) + ( 12960000 + 2160000 + 126000 + 3000 + 24 ) + ( 13845841 + 2269810 + 130235 + 3050 + 24 ) + ( 14776336 + 2383280 + 134540 + 3100 + 24 ) + ( 15752961 + 2500470 + 138915 + 3150 + 24 ) + ( 16777216 + 2621440 + 143360 + 3200 + 24 ) + ( 17850625 + 2746250 + 147875 + 3250 + 24 ) + ( 18974736 + 2874960 + 152460 + 3300 + 24 ) + ( 20151121 + 3007630 + 157115 + 3350 + 24 ) + ( 21381376 + 3144320 + 161840 + 3400 + 24 ) + ( 22667121 + 3285090 + 166635 + 3450 + 24 ) + ( 24010000 + 3430000 + 171500 + 3500 + 24 ) + ( 25411681 + 3579110 + 176435 + 3550 + 24 ) + ( 26873856 + 3732480 + 181440 + 3600 + 24 ) + ( 28398241 + 3890170 + 186515 + 3650 + 24 ) + ( 29986576 + 4052240 + 191660 + 3700 + 24 ) + ( 31640625 + 4218750 + 196875 + 3750 + 24 ) + ( 33362176 + 4389760 + 202160 + 3800 + 24 ) + ( 35153041 + 4565330 + 207515 + 3850 + 24 ) + ( 37015056 + 4745520 + 212940 + 3900 + 24 ) + ( 38950081 + 4930390 + 218435 + 3950 + 24 ) + ( 40960000 + 5120000 + 224000 + 4000 + 24 ) + ( 43046721 + 5314410 + 229635 + 4050 + 24 ) + ( 45212176 + 5513680 + 235340 + 4100 + 24 ) + ( 47458321 + 5717870 + 241115 + 4150 + 24 ) + ( 49787136 + 5927040 + 246960 + 4200 + 24 ) + ( 52200625 + 6141250 + 252875 + 4250 + 24 ) + ( 54700816 + 6360560 + 258860 + 4300 + 24 ) + ( 57289761 + 6585030 + 264915 + 4350 + 24 ) + ( 59969536 + 6814720 + 271040 + 4400 + 24 ) + ( 62742241 + 7049690 + 277235 + 4450 + 24 ) + ( 65610000 + 7290000 + 283500 + 4500 + 24 ) + ( 68574961 + 7535710 + 289835 + 4550 + 24 ) + ( 71639296 + 7786880 + 296240 + 4600 + 24 ) + ( 74805201 + 8043570 + 302715 + 4650 + 24 ) + ( 78074896 + 8305840 + 309260 + 4700 + 24 ) + ( 81450625 + 8573750 + 315875 + 4750 + 24 ) + ( 84934656 + 8847360 + 322560 + 4800 + 24 ) + ( 88529281 + 9126730 + 329315 + 4850 + 24 ) + ( 92236816 + 9411920 + 336140 + 4900 + 24 ) + ( 96059601 + 9702990 + 343035 + 4950 + 24 ) 1716555480 (0+0+0+0+24)+(1+-10+35+-50+24)+(16+-80+140+-100+24)+(81+-270+315+-150+24)+(256+-640+560+-200+24)+(625+-1250+875+-250+24)+(1296+-2160+1260+-300+24)+(2401+-3430+1715+-350+24)+(4096+-5120+2240+-400+24)+(6561+-7290+2835+-450+24)+(10000+-10000+3500+-500+24)+(14641+-13310+4235+-550+24)+(20736+-17280+5040+-600+24)+(28561+-21970+5915+-650+24)+(38416+-27440+6860+-700+24)+(50625+-33750+7875+-750+24)+(65536+-40960+8960+-800+24)+(83521+-49130+10115+-850+24)+(104976+-58320+11340+-900+24)+(130321+-68590+12635+-950+24)+(160000+-80000+14000+-1000+24)+(194481+-92610+15435+-1050+24)+(234256+-106480+16940+-1100+24)+(279841+-121670+18515+-1150+24)+(331776+-138240+20160+-1200+24)+(390625+-156250+21875+-1250+24)+(456976+-175760+23660+-1300+24)+(531441+-196830+25515+-1350+24)+(614656+-219520+27440+-1400+24)+(707281+-243890+29435+-1450+24)+(810000+-270000+31500+-1500+24)+(923521+-297910+33635+-1550+24)+(1048576+-327680+35840+-1600+24)+(1185921+-359370+38115+-1650+24)+(1336336+-393040+40460+-1700+24)+(1500625+-428750+42875+-1750+24)+(1679616+-466560+45360+-1800+24)+(1874161+-506530+47915+-1850+24)+(2085136+-548720+50540+-1900+24)+(2313441+-593190+53235+-1950+24)+(2560000+-640000+56000+-2000+24)+(2825761+-689210+58835+-2050+24)+(3111696+-740880+61740+-2100+24)+(3418801+-795070+64715+-2150+24)+(3748096+-851840+67760+-2200+24)+(4100625+-911250+70875+-2250+24)+(4477456+-973360+74060+-2300+24)+(4879681+-1038230+77315+-2350+24)+(5308416+-1105920+80640+-2400+24)+(5764801+-1176490+84035+-2450+24)+(6250000+-1250000+87500+-2500+24)+(6765201+-1326510+91035+-2550+24)+(7311616+-1406080+94640+-2600+24)+(7890481+-1488770+98315+-2650+24)+(8503056+-1574640+102060+-2700+24)+(9150625+-1663750+105875+-2750+24)+(9834496+-1756160+109760+-2800+24)+(10556001+-1851930+113715+-2850+24)+(11316496+-1951120+117740+-2900+24)+(12117361+-2053790+121835+-2950+24)+(12960000+-2160000+126000+-3000+24)+(13845841+-2269810+130235+-3050+24)+(14776336+-2383280+134540+-3100+24)+(15752961+-2500470+138915+-3150+24)+(16777216+-2621440+143360+-3200+24)+(17850625+-2746250+147875+-3250+24)+(18974736+-2874960+152460+-3300+24)+(20151121+-3007630+157115+-3350+24)+(21381376+-3144320+161840+-3400+24)+(22667121+-3285090+166635+-3450+24)+(24010000+-3430000+171500+-3500+24)+(25411681+-3579110+176435+-3550+24)+(26873856+-3732480+181440+-3600+24)+(28398241+-3890170+186515+-3650+24)+(29986576+-4052240+191660+-3700+24)+(31640625+-4218750+196875+-3750+24)+(33362176+-4389760+202160+-3800+24)+(35153041+-4565330+207515+-3850+24)+(37015056+-4745520+212940+-3900+24)+(38950081+-4930390+218435+-3950+24)+(40960000+-5120000+224000+-4000+24)+(43046721+-5314410+229635+-4050+24)+(45212176+-5513680+235340+-4100+24)+(47458321+-5717870+241115+-4150+24)+(49787136+-5927040+246960+-4200+24)+(52200625+-6141250+252875+-4250+24)+(54700816+-6360560+258860+-4300+24)+(57289761+-6585030+264915+-4350+24)+(59969536+-6814720+271040+-4400+24)+(62742241+-7049690+277235+-4450+24)+(65610000+-7290000+283500+-4500+24)+(68574961+-7535710+289835+-4550+24)+(71639296+-7786880+296240+-4600+24)+(74805201+-8043570+302715+-4650+24)+(78074896+-8305840+309260+-4700+24)+(81450625+-8573750+315875+-4750+24)+(84934656+-8847360+322560+-4800+24)+(88529281+-9126730+329315+-4850+24)+(92236816+-9411920+336140+-4900+24)+(96059601+-9702990+343035+-4950+24) \Rightarrow 1716555480

1716555480 5 19 90345025 \frac{1716555480-5}{19}\Rightarrow 90345025

Care to elaborate?

Pi Han Goh - 2 years, 1 month ago

It really is as simple as add the one hundred function values for n n from 0 to 99 ( N. B., the author corrected the summation range from 1 100 1\to 100 to 0 99 0\to 99 after a report against the problem), subtract 5 and divide the result by 19 to give the final result.

A Former Brilliant Member - 2 years, 1 month ago

Log in to reply

So basically you just ask the computer to do the work, alright.

Pi Han Goh - 2 years, 1 month ago

Log in to reply

After a half century of computer programming, starting with a mathematics problem no less, having an adequate home computer, they come naturally to me. Furthermore, I had to know what to tell the computer to do.

Some summation formulas: i = 0 n i j \sum _{i=0}^n i^j \Rightarrow

0 n + 1 1 1 2 n ( n + 1 ) 2 1 6 n ( n + 1 ) ( 2 n + 1 ) 3 1 4 n 2 ( n + 1 ) 2 4 1 30 n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n 1 ) 5 1 12 n 2 ( n + 1 ) 2 ( 2 n 2 + 2 n 1 ) 6 1 42 n ( n + 1 ) ( 2 n + 1 ) ( 3 n 4 + 6 n 3 3 n + 1 ) 7 1 24 n 2 ( n + 1 ) 2 ( 3 n 4 + 6 n 3 n 2 4 n + 2 ) 8 1 90 n ( n + 1 ) ( 2 n + 1 ) ( 5 n 6 + 15 n 5 + 5 n 4 15 n 3 n 2 + 9 n 3 ) 9 1 20 n 2 ( n + 1 ) 2 ( n 2 + n 1 ) ( 2 n 4 + 4 n 3 n 2 3 n + 3 ) \begin{array}{ll} 0 & n+1 \\ 1 & \frac{1}{2} n (n+1) \\ 2 & \frac{1}{6} n (n+1) (2 n+1) \\ 3 & \frac{1}{4} n^2 (n+1)^2 \\ 4 & \frac{1}{30} n (n+1) (2 n+1) \left(3 n^2+3 n-1\right) \\ 5 & \frac{1}{12} n^2 (n+1)^2 \left(2 n^2+2 n-1\right) \\ 6 & \frac{1}{42} n (n+1) (2 n+1) \left(3 n^4+6 n^3-3 n+1\right) \\ 7 & \frac{1}{24} n^2 (n+1)^2 \left(3 n^4+6 n^3-n^2-4 n+2\right) \\ 8 & \frac{1}{90} n (n+1) (2 n+1) \left(5 n^6+15 n^5+5 n^4-15 n^3-n^2+9 n-3\right) \\ 9 & \frac{1}{20} n^2 (n+1)^2 \left(n^2+n-1\right) \left(2 n^4+4 n^3-n^2-3 n+3\right) \\ \end{array}

I put these summation formulas and more at Summation formulas for powers 0 to 20 of integers

Evaluated for the specific value of 99:

0 100 1 4950 2 328350 3 24502500 4 1950333330 5 161708332500 6 13790714119050 7 1200583304167500 8 106177773111333330 9 9507499300049998500 \begin{array}{lr} 0 & 100 \\ 1 & 4950 \\ 2 & 328350 \\ 3 & 24502500 \\ 4 & 1950333330 \\ 5 & 161708332500 \\ 6 & 13790714119050 \\ 7 & 1200583304167500 \\ 8 & 106177773111333330 \\ 9 & 9507499300049998500 \\ \end{array}

1 1950333330 10 24502500 + 35 328350 50 4950 + 24 100 = 1716555480 1\ 1950333330-10\ 24502500+35\ 328350-50\ 4950+24\ 100=1716555480

1716555475 19 = 90345025 \frac{1716555475}{19}=90345025

A Former Brilliant Member - 2 years, 1 month ago

Log in to reply

@A Former Brilliant Member Well, if a question posed in Brilliant is not tagged under the Computer Science category, I'd opt to use a minimal amount of computer work to solve this question.

Pi Han Goh - 2 years, 1 month ago

Log in to reply

@Pi Han Goh I understand that you are offended. I will continue to use available tools whether they be learned, researched or computed.

A Former Brilliant Member - 2 years, 1 month ago

Log in to reply

@A Former Brilliant Member No, I'm not offended at all. I just thought that you got some ingenious tricks up your sleeves when solving this question.

I actually quite enjoy most of the solutions that you've posted.

Cheers mate ;)

Pi Han Goh - 2 years, 1 month ago

Log in to reply

@Pi Han Goh Thank you. I usually label solutions when I have done an exhaustive computer solution. The label usually is "brute force solution." Sometimes, the brute force solution leads me to a clever solution. My math library here at home is several hundred books. I often go there for inspiration.

A Former Brilliant Member - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...