Tan-fastic

Geometry Level 3

tan 6 ( π 9 ) + tan 6 ( 2 π 9 ) + tan 6 ( 4 π 9 ) = ? \large\tan^6\! \left(\frac{\pi}{9}\right)+\tan^6\! \left(\frac{2\pi}{9}\right)+\tan^6\! \left(\frac{4\pi}{9}\right) = \ ?


The answer is 33273.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Louis W
Oct 7, 2015

This solution utilizes several lesser known trig identities, so even though it's very messy it may be informative.

tan x = sin x cos x \color{#D61F06}{\tan x = \frac{\sin x}{\cos x}} tan 6 π 9 + tan 6 2 π 9 + tan 6 4 π 9 = sin 6 π 9 cos 6 π 9 + sin 6 2 π 9 cos 6 2 π 9 + sin 6 4 π 9 cos 6 4 π 9 \tan^{6}\frac{\pi}{9}+\tan^{6}\frac{2\pi}{9}+\tan^{6}\frac{4\pi}{9}=\frac{\sin^{6}\frac{\pi}{9}}{\cos^{6}\frac{\pi}{9}}+\frac{\sin^{6}\frac{2\pi}{9}}{\cos^{6}\frac{2\pi}{9}}+\frac{\sin^{6}\frac{4\pi}{9}}{\cos^{6}\frac{4\pi}{9}} = ( sin π 9 cos 2 π 9 cos 4 π 9 ) 6 + ( sin 2 π 9 cos π 9 cos 4 π 9 ) 6 + ( sin 4 π 9 cos π 9 cos 2 π 9 ) 6 ( cos π 9 cos 2 π 9 cos 4 π 9 ) 6 =\frac{\color{#3D99F6}{(\sin\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{4\pi}{9})^{6}}\color{#333333}+\color{#EC7300}{(\sin\frac{2\pi}{9}\cos\frac{\pi}{9}\cos\frac{4\pi}{9})^{6}}\color{#333333}+\color{#20A900}{(\sin\frac{4\pi}{9}\cos\frac{\pi}{9}\cos\frac{2\pi}{9})^{6}}}{(\cos\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{4\pi}{9})^{6}} Knowing the value of the denominator first will make the chaos of finding the value of the numerator make more sense.

cos π 9 cos 2 π 9 cos 4 π 9 = 1 8 \color{#D61F06}{\cos\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{4\pi}{9}=\frac{1}{8}} ( cos π 9 cos 2 π 9 cos 4 π 9 ) 6 = ( 1 8 ) 6 = 1 8 6 \left(\cos\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{4\pi}{9}\right)^{6}=\left(\frac{1}{8}\right)^{6}=\frac{1}{8^{6}} Finding the value of the numerator (the way I did it) involves taking that mess and turning it into a larger and larger mess until it finally collapses on itself. I will show the details of the blue term. The details of the orange and green terms will follow the exact same logic and look almost identical, so I will just show the highlights for the orange and green terms.

Blue Term: \color{#3D99F6}{\text{Blue Term:}}

cos x cos y = 1 2 [ cos ( x y ) + cos ( x + y ) ] \color{#D61F06}{\cos x\cos y=\frac{1}{2}[\cos(x-y)+\cos(x+y)]}

cos x sin y = 1 2 [ sin ( x + y ) sin ( x y ) ] \color{#D61F06}{\cos x\sin y=\frac{1}{2}[\sin(x+y)-\sin(x-y)]}

cos 2 π 3 = 1 2 sin π 3 = 3 2 \color{#D61F06}{\cos\frac{2\pi}{3}=-\frac{1}{2} \quad\quad \sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}} ( sin π 9 cos 2 π 9 cos 4 π 9 ) 6 = ( sin π 9 [ 1 2 ( cos 2 π 9 + cos 2 π 3 ) ] ) 6 \left(\sin\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{4\pi}{9}\right)^{6}=\left(\sin\frac{\pi}{9}\left[\frac{1}{2}\left(\cos\frac{2\pi}{9}+\cos\frac{2\pi}{3}\right)\right]\right)^{6} = ( 1 2 cos 2 π 9 sin π 9 1 4 sin π 9 ) 6 = ( 1 2 [ 1 2 ( sin π 3 sin π 9 ) ] 1 4 sin π 9 ) 6 =\left(\frac{1}{2}\cos\frac{2\pi}{9}\sin\frac{\pi}{9}-\frac{1}{4}\sin\frac{\pi}{9}\right)^{6}=\left(\frac{1}{2}\left[\frac{1}{2}\left(\sin\frac{\pi}{3}-\sin\frac{\pi}{9}\right)\right]-\frac{1}{4}\sin\frac{\pi}{9}\right)^{6} = ( 3 8 1 2 sin π 9 ) 6 =\left(\frac{\sqrt{3}}{8}-\frac{1}{2}\sin\frac{\pi}{9}\right)^{6} Binomial Expasion \text{Binomial Expasion} = 27 8 6 + 6 9 3 8 5 ( 1 2 sin π 9 ) + 15 9 8 4 ( 1 4 sin 2 π 9 ) + 20 3 3 8 3 ( 1 8 sin 3 π 9 ) =\frac{27}{8^{6}}+6\cdot \frac{9\sqrt{3}}{8^{5}}\cdot \left(-\frac{1}{2}\sin\frac{\pi}{9}\right)+15\cdot \frac{9}{8^{4}}\cdot \left(\frac{1}{4}\sin^{2}\frac{\pi}{9}\right)+20\cdot \frac{3\sqrt{3}}{8^{3}}\cdot \left(-\frac{1}{8}\sin^{3}\frac{\pi}{9}\right) + 15 3 8 2 ( 1 16 sin 4 π 9 ) + 6 3 8 ( 1 32 sin 5 π 9 ) + 1 64 sin 6 π 9 +15\cdot \frac{3}{8^{2}}\cdot \left(\frac{1}{16}\sin^{4}\frac{\pi}{9}\right)+6\cdot \frac{\sqrt{3}}{8}\cdot \left(-\frac{1}{32}\sin^{5}\frac{\pi}{9}\right)+\frac{1}{64}\sin^{6}\frac{\pi}{9} Power Reduction \text{Power Reduction}

In this part, I will combine power reduction and putting all terms in a common denominator for each of the seven terms separately and then combine then together at the end.

n is odd: sin n x = 1 2 n 1 k = 0 n 1 2 ( 1 ) ( n 1 2 k ) ( n k ) sin ( ( n 2 k ) x ) ( n k ) refers to binomial expansion \color{#D61F06}{\text{n is odd:}\quad\sin^{n}x=\frac{1}{2^{n-1}}\sum_{k=0}^{\frac{n-1}{2}}(-1)^{(\frac{n-1}{2}-k)}\left(\begin{array}{c}n\\ k\end{array}\right)\sin((n-2k)x)}\quad\color{#333333}\left(\begin{array}{c}n\\ k\end{array}\right) \text{refers to binomial expansion}

n is even: sin n x = 1 2 n ( n n 2 ) + 1 2 n 1 k = 0 n 2 1 ( 1 ) ( n 2 k ) ( n k ) cos ( ( n 2 k ) x ) \color{#D61F06}{\text{n is even:}\quad\sin^{n}x=\frac{1}{2^{n}}\left(\begin{array}{c}n\\ \frac{n}{2}\end{array}\right)+\frac{1}{2^{n-1}}\sum_{k=0}^{\frac{n}{2}-1}(-1)^{(\frac{n}{2}-k)}\left(\begin{array}{c}n\\ k\end{array}\right)\cos((n-2k)x)}

1) 27 8 6 Already good \quad\frac{27}{8^{6}}\quad\text{Already good}

2) 4 4 = 216 3 sin π 9 8 6 \quad\cdot\frac{4}{4}=\frac{-216\sqrt{3}\sin\frac{\pi}{9}}{8^{6}}

3) = 135 8 4 1 4 1 cos 2 π 9 2 8 8 = 1080 1080 cos 2 π 9 8 6 \quad=\frac{135}{8^{4}}\cdot\frac{1}{4}\cdot\frac{1-\cos\frac{2\pi}{9}}{2}\cdot\frac{8}{8}=\frac{1080-1080\cos\frac{2\pi}{9}}{8^{6}}

4) = 60 3 8 4 3 sin π 9 sin π 3 4 16 16 = 2880 3 sin π 9 + 1440 8 6 \quad=\frac{-60\sqrt{3}}{8^{4}}\cdot\frac{3\sin\frac{\pi}{9}-\sin\frac{\pi}{3}}{4}\cdot\frac{16}{16}=\frac{-2880\sqrt{3}\sin\frac{\pi}{9}+1440}{8^{6}}

5) = 45 8 3 1 2 3 4 cos 2 π 9 + cos 4 π 9 8 32 32 = 4320 5760 cos 2 π 9 + 1440 cos 4 π 9 8 6 \quad=\frac{45}{8^{3}}\cdot\frac{1}{2}\cdot\frac{3-4\cos\frac{2\pi}{9}+\cos\frac{4\pi}{9}}{8}\cdot\frac{32}{32}=\frac{4320-5760\cos\frac{2\pi}{9}+1440\cos\frac{4\pi}{9}}{8^{6}}

6) = 6 3 8 2 1 4 10 sin π 9 5 sin π 3 + sin 5 π 9 16 64 64 = 3840 3 sin π 9 + 2880 384 3 sin 5 π 9 8 6 \quad=\frac{-6\sqrt{3}}{8^{2}}\cdot\frac{1}{4}\cdot\frac{10\sin\frac{\pi}{9}-5\sin\frac{\pi}{3}+\sin\frac{5\pi}{9}}{16}\cdot\frac{64}{64}=\frac{-3840\sqrt{3}\sin\frac{\pi}{9}+2880-384\sqrt{3}\sin\frac{5\pi}{9}}{8^{6}}

7) = 1 8 2 10 15 cos 2 π 9 + 6 cos 4 π 9 cos 2 π 3 32 128 128 = 1344 1920 cos 2 π 9 + 768 cos 4 π 9 8 6 \quad=\frac{1}{8^{2}}\cdot\frac{10-15\cos\frac{2\pi}{9}+6\cos\frac{4\pi}{9}-\cos\frac{2\pi}{3}}{32}\cdot\frac{128}{128}=\frac{1344-1920\cos\frac{2\pi}{9}+768\cos\frac{4\pi}{9}}{8^{6}}

Add and combine like terms, and finally: Blue Term = 6936 3 sin π 9 8760 cos 2 π 9 + 2208 cos 4 π 9 384 3 sin 5 π 9 + 11091 8 6 \color{#3D99F6}{\text{Blue Term}}\color{#333333}=\frac{-6936\sqrt{3}\sin\frac{\pi}{9}-8760\cos\frac{2\pi}{9}+2208\cos\frac{4\pi}{9}-384\sqrt{3}\sin\frac{5\pi}{9}+11091}{8^{6}} Orange Term: ( sin 2 π 9 cos π 9 cos 4 π 9 ) 6 = ( 1 2 sin 2 π 9 3 8 ) 6 \color{#EC7300}{\text{Orange Term:}}\color{#333333}\quad\left(\sin\frac{2\pi}{9}\cos\frac{\pi}{9}\cos\frac{4\pi}{9}\right)^{6}=\left(\frac{1}{2}\sin\frac{2\pi}{9}-\frac{\sqrt{3}}{8}\right)^{6} = 6936 3 sin 2 π 9 8760 cos 4 π 9 + 2208 cos 8 π 9 384 3 sin 10 π 9 + 11091 8 6 =\frac{-6936\sqrt{3}\sin\frac{2\pi}{9}-8760\cos\frac{4\pi}{9}+2208\cos\frac{8\pi}{9}-384\sqrt{3}\sin\frac{10\pi}{9}+11091}{8^{6}} Green Term: ( sin 4 π 9 cos π 9 cos 2 π 9 ) 6 = ( 1 2 sin 4 π 9 + 3 8 ) 6 \color{#20A900}{\text{Green Term:}}\color{#333333}\quad\left(\sin\frac{4\pi}{9}\cos\frac{\pi}{9}\cos\frac{2\pi}{9}\right)^{6}=\left(\frac{1}{2}\sin\frac{4\pi}{9}+\frac{\sqrt{3}}{8}\right)^{6} = 6936 3 sin 4 π 9 8760 cos 8 π 9 + 2208 cos 16 π 9 + 384 3 sin 20 π 9 + 11091 8 6 =\frac{6936\sqrt{3}\sin\frac{4\pi}{9}-8760\cos\frac{8\pi}{9}+2208\cos\frac{16\pi}{9}+384\sqrt{3}\sin\frac{20\pi}{9}+11091}{8^{6}} Now the blue, orange and green terms are added together. All of the trig terms cancel each other out and all that's left are the numbers. It's just hard to see because they cancel in sets of three not sets of two like you might be looking for. You might notice the blue, orange and green terms have the same set of coefficients. Since they are being added, if you group the terms with the same coefficient together, factor out that coefficient, and use these trig identities, they will indeed cancel out.

cos π 9 cos 2 π 9 cos 4 π 9 = 0 \color{#D61F06}{\cos\frac{\pi}{9}-\cos\frac{2\pi}{9}-\cos\frac{4\pi}{9}=0}

sin π 9 + sin 2 π 9 sin 4 π 9 = 0 \color{#D61F06}{\sin\frac{\pi}{9}+\sin\frac{2\pi}{9}-\sin\frac{4\pi}{9}=0}

sin ( π x ) = sin x sin ( π + x ) = sin x sin ( 2 π + x ) = sin x \color{#D61F06}{\sin(\pi-x)=\sin x\quad\sin(\pi+x)=-\sin x\quad\sin(2\pi+x)=\sin x}

cos ( π x ) = cos x cos ( x ) = cos x cos ( 2 π + x ) = cos x \color{#D61F06}{\cos(\pi-x)=-\cos x\quad\cos(-x)=\cos x\quad\cos(2\pi+x)=\cos x}

1) 6936 3 ( sin π 9 + sin 2 π 9 sin 4 π 9 ) = 6936 3 ( 0 ) = 0 \quad -6936\sqrt{3}(\sin\frac{\pi}{9}+\sin\frac{2\pi}{9}-\sin\frac{4\pi}{9})= -6936\sqrt{3}(0)=0

2) 8760 ( cos 2 π 9 + cos 4 π 9 + cos 8 π 9 ) = 8760 ( cos 2 π 9 + cos 4 π 9 cos π 9 ) \quad -8760(\cos\frac{2\pi}{9}+\cos\frac{4\pi}{9}+\cos\frac{8\pi}{9})=-8760(\cos\frac{2\pi}{9}+\cos\frac{4\pi}{9}\color{#3D99F6}{-\cos\frac{\pi}{9}})

= 8760 ( cos π 9 cos 2 π 9 cos 4 π 9 ) = 8760 ( 0 ) = 0 \quad =\color{#3D99F6}{8760}\color{#333333}(\cos\frac{\pi}{9}-\cos\frac{2\pi}{9}-\cos\frac{4\pi}{9})=8760(0)=0

3) 2208 ( cos 4 π 9 + cos 8 π 9 + cos 16 π 9 ) = 2208 ( cos 4 π 9 cos π 9 + cos 2 π 9 ) \quad 2208(\cos\frac{4\pi}{9}+\cos\frac{8\pi}{9}+\cos\frac{16\pi}{9})=2208(\cos\frac{4\pi}{9}\color{#3D99F6}{-\cos\frac{\pi}{9}}\color{#333333}+\color{#20A900}{\cos\frac{-2\pi}{9}})

= 2208 ( cos 4 π 9 cos π 9 + cos 2 π 9 ) = 2208 ( cos π 9 cos 2 π 9 cos 4 π 9 ) = 2208 ( 0 ) = 0 \quad =2208(\cos\frac{4\pi}{9}-\cos\frac{\pi}{9}\color{#333333}+\color{#20A900}{\cos\frac{2\pi}{9}}\color{#333333})=\color{#3D99F6}-2208\color{#333333}(\cos\frac{\pi}{9}-\cos\frac{2\pi}{9}-\cos\frac{4\pi}{9})=-2208(0)=0

4) 384 3 ( sin 5 π 9 + sin 10 π 9 sin 20 π 9 ) = 384 3 ( sin 4 π 9 sin π 9 sin 2 π 9 ) \quad -384\sqrt{3}(\sin\frac{5\pi}{9}+\sin\frac{10\pi}{9}-\sin\frac{20\pi}{9})=-384\sqrt{3}(\color{#3D99F6}{\sin\frac{4\pi}{9}}\color{#20A900}{-\sin\frac{\pi}{9}}\color{#333333}-\color{#69047E}{\sin\frac{2\pi}{9}})

= 384 3 ( sin π 9 + sin 2 π 9 sin 4 π 9 ) = 384 3 ( 0 ) = 0 \quad =\color{#3D99F6}{384\sqrt{3}}\color{#333333}(\sin\frac{\pi}{9}+\sin\frac{2\pi}{9}-\sin\frac{4\pi}{9})=384\sqrt{3}(0)=0

11091 + 11091 + 11091 8 6 1 8 6 = 33273 \frac{\frac{11091+11091+11091}{8^{6}}}{\frac{1}{8^{6}}}=\color{#3D99F6}{33273}\color{#333333}\quad\Box

OH MY GODD! SO LONG!!!

Pi Han Goh - 5 years, 5 months ago
Otto Bretscher
Sep 30, 2015

Considering the imaginary part of ( cos ( k π / 9 ) + i sin ( k π / 9 ) ) 9 (\cos(k\pi/9)+i\sin(k\pi/9))^9 , we obtain the formula ( 9 9 ) x 9 ( 9 7 ) x 7 + ( 9 5 ) x 5 ( 9 3 ) x 3 + ( 9 1 ) x = 0 {9\choose9}x^9-{9\choose7}x^7+{9\choose5}x^5-{9\choose3}x^3+{9\choose1}x=0 for x = tan ( k π 9 ) x=\tan\left(\frac{k\pi}{9}\right) . Dividing out x ( x 3 3 ) x(x^3-3) , accounting for 0 and ± π 3 \pm\frac{\pi}{3} , we end up with the even polynomial x 6 33 x 4 + 27 x 2 3 x^6-33x^4+27x^2-3 whose roots are x = tan ( k π 9 ) x=\tan\left(\frac{k\pi}{9}\right) for k = ± 1 , ± 2 , ± 4 k=\pm{1},\pm{2},\pm{4} . Thus the roots of x 3 33 x 2 + 27 x 3 x^3-33x^2+27x-3 are x = tan 2 ( k π 9 ) x=\tan^2\left(\frac{k\pi}{9}\right) for k = 1 , 2 , 4 k=1,2,4 . Now, by Girard's formula, the sum of the cubes of the roots of this polynomial is 3 3 3 3 33 27 + 3 3 = 33273 33^3-3*33*27+3*3=\boxed{33273} .

How did you get the first polynomial?

Pi Han Goh - 5 years, 8 months ago

Log in to reply

Finding the minimal polynomial of tan ( k π / n ) \tan(k\pi/n) is a classic and well-understood problem; there is an algorithm. For odd n n the polynomial is of degree ϕ ( n ) \phi(n) . Her is a good exposition

Otto Bretscher - 5 years, 8 months ago

Log in to reply

Ahhh, This solved the other problem .

By the way, I got the polynomial x 4 36 x 3 + 126 x 2 84 x + 9 x^4 - 36x^3 + 126x^2 - 84x + 9 instead, then I minus the value of tan 6 ( 3 π 9 ) \tan^6\left(\frac{3\pi}9\right) . How did you get the cubic polynomial from the start? That's what I'm asking.

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh Since the minimal polynomial of tan ( π / n ) \tan(\pi/n) is even for odd n n , I considered tan 2 ( π / n ) \tan^2(\pi/n) to bring it down to a cubic for n = 9 n=9 .

Otto Bretscher - 5 years, 8 months ago

Log in to reply

@Otto Bretscher Wait. You didn't start with this: ( 9 1 ) tan ( x ) ( 9 3 ) tan 3 ( x ) + ( 9 5 ) tan 5 ( x ) ( 9 7 ) tan 7 ( x ) ( 9 9 ) tan 9 ( x ) = 0 \dbinom{9}{1} \tan(x) - \dbinom93 \tan^3(x) + \dbinom{9}{5} \tan^5(x) - \dbinom97 \tan^7(x) -\dbinom99 \tan^9(x) = 0 ?

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh I factored out x ( x 2 3 ) x(x^2-3) to account for 0 and ± π / 3 \pm{\pi/3} ; now we have the minimal polynomial of tan ( π / 9 ) \tan(\pi/9) . Then I halved the degree by considering tan 2 ( π / 9 ) \tan^2(\pi/9) ... I'm sorry for these cryptic messages that I hastily type in work breaks

Otto Bretscher - 5 years, 8 months ago

Log in to reply

@Otto Bretscher Oh got it. No problem. You might want to add that to your solution so the newbies can understand it better.

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh I might do that in the evening... thanks for the dialogue!

Otto Bretscher - 5 years, 8 months ago

Log in to reply

@Otto Bretscher No. Thank you. I got to learn something new today!

Pi Han Goh - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...