Tangent product series!

Geometry Level 1

tan 1 tan 2 tan 3 tan 4 tan 8 6 tan 8 7 tan 8 8 tan 8 9 = ? \tan{1^{\circ}} \tan{2^{\circ}} \tan{3^{\circ}} \tan{4^{\circ}} \cdots \tan{86^{\circ}} \tan{87^{\circ}} \tan{88^{\circ}} \tan{89^{\circ}} = \ ?

Inspiration

1 1 8 9 2 89^{2} 0 0 Diverges!

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

tan θ = cot ( 9 0 θ ) \tan{\theta} = \cot({90^{\circ}-\theta})

Product = tan 1 tan 2 tan 3 tan 4 tan 8 6 tan 8 7 tan 8 8 tan 8 9 = tan 1 tan 8 9 tan 2 tan 8 8 tan 3 tan 8 7 tan 4 tan 8 6 = tan 1 cot 1 tan 8 8 cot 8 8 tan 8 7 cot 8 7 tan 8 6 cot 8 6 = tan 1 cot 1 tan 8 8 cot 8 8 tan 8 7 cot 8 7 tan 8 6 cot 8 6 = 1 \begin{aligned} \text{Product} &=\tan{1^{\circ}} \tan{2^{\circ}} \tan{3^{\circ}} \tan{4^{\circ}} \cdots \tan{86^{\circ}} \tan{87^{\circ}} \tan{88^{\circ}} \tan{89^{\circ}} \\ &=\tan{1^{\circ}} \tan{89^{\circ}} \tan{2^{\circ}} \tan{88^{\circ}} \tan{3^{\circ}} \tan{87^{\circ}} \tan{4^{\circ}} \tan{86^{\circ}} \cdots \\ &=\tan{1^{\circ}} \cot{1^{\circ}} \tan{88^{\circ}} \cot{88^{\circ}} \tan{87^{\circ}} \cot{87^{\circ}} \tan{86^{\circ}} \cot{86^{\circ}} \cdots \\ &=\cancel{\tan{1^{\circ}}} \cancel{\cot{1^{\circ}}} \cancel{\tan{88^{\circ}}} \cancel{\cot{88^{\circ}}} \cancel{\tan{87^{\circ}}} \cancel{\cot{87^{\circ}}} \cancel{\tan{86^{\circ}}} \cancel{\cot{86^{\circ}}} \cdots \\ &=\boxed{1} \end{aligned}

Try to put brackets like this - cot ( 90 ° θ ) \cot(90\degree-\theta) so that it is clear that you are not saying this - cot ( 90 ° ) θ \cot(90\degree)-\theta

Zakir Husain - 10 months, 3 weeks ago

Log in to reply

Haha I edited before your comment! :)

Vinayak Srivastava - 10 months, 3 weeks ago

@Vinayak Srivastava see this

Zakir Husain - 10 months, 3 weeks ago

Log in to reply

Sir, can you post a solution to it? I don't know how to do it.

Vinayak Srivastava - 10 months, 3 weeks ago

Log in to reply

I posted a solution to it for you.

Siddharth Chakravarty - 10 months, 3 weeks ago

Log in to reply

@Siddharth Chakravarty Thank you!

Vinayak Srivastava - 10 months, 3 weeks ago

here

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

Oh, didn't know you had already posted this. Do you want me to delete my problem?

Vinayak Srivastava - 10 months, 2 weeks ago

Log in to reply

Nah... It's fine. I don't expect NO repetition at all, there will definitely be many

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

@Mahdi Raza I was thinking of posting a new discussion, where everyone who wants to prepare Maths for PRMO and other olympiads can post new questions, and everyone can get many questions for practice. How is the idea?

Vinayak Srivastava - 10 months, 2 weeks ago

Log in to reply

@Vinayak Srivastava Sure, go ahead! There's one for RMO but not for PRMO. Make one!!

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

@Mahdi Raza Oh, where's the RMO one?

Vinayak Srivastava - 10 months, 2 weeks ago

Log in to reply

@Vinayak Srivastava here

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

@Mahdi Raza Thanks! I'll bookmark it and will see to it if I qualify PRMO.

Vinayak Srivastava - 10 months, 2 weeks ago

Log in to reply

@Vinayak Srivastava Yeah, All the best. Let's see whether PRMO even happens or not :)

Mahdi Raza - 10 months, 2 weeks ago
Mahdi Raza
Aug 1, 2020

P = tan ( 1 ) × tan ( 2 ) tan ( 4 4 ) × tan ( 4 5 ) × tan ( 4 6 ) tan ( 8 8 ) × tan ( 8 9 ) = tan ( 1 ) × tan ( 2 ) tan ( 4 4 ) × tan ( 4 5 ) × cot ( 4 4 ) cot ( 2 ) × cot ( 1 ) = tan ( 1 ) × cot ( 1 ) × tan ( 2 ) × cot ( 2 ) × tan ( 3 ) × cot ( 3 ) × tan ( 4 4 ) × cot ( 4 4 ) × tan ( 4 5 ) = 1 × 1 × 1 × 1 P = 1 \begin{aligned} P &= {\color{#EC7300}{\tan(1^\circ) \times \tan(2^\circ) \ldots \tan(44^\circ)}}\times \blue{\tan(45^\circ)} \times {\color{#69047E}{\tan(46^\circ) \ldots \tan(88^\circ) \times \tan(89^\circ)}} \\ \\ &= {\color{#EC7300}{\tan(1^\circ) \times \tan(2^\circ) \ldots \tan(44^\circ)}}\times \blue{\tan(45^\circ)} \times {\color{#69047E}{\cot(44^\circ) \ldots \cot(2^\circ) \times \cot(1^\circ)}} \\ \\ &= {\color{#EC7300}{\tan(1^\circ)}} \times {\color{#69047E}{\cot(1^\circ)}} \times {\color{#EC7300}{\tan(2^\circ)}} \times {\color{#69047E}{\cot(2^\circ)}} \times {\color{#EC7300}{\tan(3^\circ)}} \times {\color{#69047E}{\cot(3^\circ)}} \ldots \times {\color{#EC7300}{\tan(44^\circ)}} \times {\color{#69047E}{\cot(44^\circ)}} \times \blue{\tan(45^\circ)} \\ \\ &= 1 \times 1 \times 1 \times \ldots \blue{1} \\ \\ P &= \boxed{1} \end{aligned}

Brilliant coloring!

Vinayak Srivastava - 10 months, 2 weeks ago

Log in to reply

Thanks!! :)

Mahdi Raza - 10 months, 2 weeks ago

Check this out!

Vinayak Srivastava - 10 months, 2 weeks ago

Log in to reply

Ok, I'll add when I find. Thanks for making one. I have a suggestion. did you look at the RMO one? Can you try to format it like that? I wonder if a discussion can be made by two people. Or maybe that needs to be converted into a page

Mahdi Raza - 10 months, 2 weeks ago

Log in to reply

That is a wiki, which means it has been made by mutliple people, it is not possible to make this kind of page for one person.

Vinayak Srivastava - 10 months, 2 weeks ago

Maybe we can ask the Staff how to make a wiki, then we will all contribute and help!

Vinayak Srivastava - 10 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...