Tangent Tango 2

Geometry Level 4

If tan 2 12 ° \tan^2 12° , tan 2 24 ° \tan^2 24° , tan 2 48 ° \tan^2 48° , and tan 2 96 ° \tan^2 96° are the roots of the polynomial f ( x ) = x 4 + A x 3 + B x 2 + C x + D f(x) = x^4 + Ax^3 + Bx^2 + Cx + D , find A + 2 B + 3 C + 4 D A + 2B + 3C + 4D .


The answer is 96.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Nov 4, 2020

Let's first convert all the angles to radians, 1 2 π 15 , 2 4 2 π 15 , 4 8 4 π 15 , 9 6 8 π 15 12^\circ \to \frac{\pi}{15}, \quad 24^\circ \to \frac{2\pi}{15}, \quad 48^\circ \to \frac{4\pi}{15}, \quad 96^\circ \to \frac{8\pi}{15}

The equation cos ( 5 X ) = 1 2 \cos(5X) = - \frac12 has roots 2 π 15 , 4 π 15 , 8 π 15 , 10 π 15 , 14 π 15 . \frac{2\pi}{15}, \frac{4\pi}{15}, \frac{8\pi}{15}, \frac{10\pi}{15}, \frac{14\pi}{15} .

Using quintuple angle formula, cos ( 5 X ) = 16 cos 5 ( X ) 20 cos 3 ( X ) + 5 cos ( X ) \cos(5X) = 16\cos^5(X) - 20\cos^3(X) + 5\cos(X) . Let y = cos ( X ) y = \cos(X) , the equation cos ( 5 X ) = 1 2 \cos(5X) = - \frac12 becomes 16 y 5 20 y 3 + 5 y = 1 2 ( 2 y + 1 ) ( 16 y 4 8 y 3 16 y 2 + 8 y + 1 ) = 0. 16y^5 - 20y^3 + 5y = -\frac12 \quad \Leftrightarrow \quad (2y + 1)(16y^4 - 8y^3 - 16y^2 + 8y + 1 ) = 0. The quintic factor must have roots cos ( 2 π 15 ) , cos ( 4 π 15 ) , cos ( 8 π 15 ) , cos ( 14 π 15 ) \cos( \tfrac{2\pi}{15}) , \cos( \tfrac{4\pi}{15}) , \cos( \tfrac{8\pi}{15}) , \cos( \tfrac{14\pi}{15}) .

We have g 1 ( Y ) : = 16 Y 4 8 Y 3 16 Y 2 + 8 Y + 1 g_1(Y) := 16Y^4 - 8Y^3 - 16Y^2 + 8Y + 1 whose roots are cos ( 2 π 15 ) , cos ( 4 π 15 ) , cos ( 8 π 15 ) , cos ( 14 π 15 ) \cos( \tfrac{2\pi}{15}) , \cos( \tfrac{4\pi}{15}) , \cos( \tfrac{8\pi}{15}) , \cos( \tfrac{14\pi}{15}) .

Likewise, g 1 ( Y ) = 0 g_1 \left( \sqrt Y \right) = 0 has roots cos 2 ( 2 π 15 ) , cos 2 ( 4 π 15 ) , cos 2 ( 8 π 15 ) , cos 2 ( 14 π 15 ) = cos 2 ( π 15 ) \cos^2( \tfrac{2\pi}{15}) , \cos^2( \tfrac{4\pi}{15}) , \cos^2( \tfrac{8\pi}{15}) , \cos^2( \tfrac{14\pi}{15}) = \cos^2( \tfrac{\pi}{15}) .

g 1 ( Y ) = 0 16 Y 2 8 Y Y 16 Y + 8 Y + 1 = 0 16 Y 2 16 Y + 1 = 8 Y ( Y 1 ) ( 16 Y 2 16 Y + 1 ) 2 = ( 8 Y ) 2 ( Y 1 ) 2 256 Y 4 576 Y 3 + 416 Y 2 96 Y + 1 = 0 \begin{array} { r c l } g_1 \left( \sqrt Y \right) &=& 0 \\ 16Y^2 - 8Y \sqrt Y - 16Y + 8\sqrt Y + 1 &=& 0 \\ 16Y^2 - 16Y + 1 &=& 8\sqrt Y (Y - 1) \\ (16Y^2 - 16Y + 1)^2 &=& \left(8\sqrt Y \right)^2 (Y - 1)^2 \\ 256Y^4 - 576Y^3 + 416Y^2 - 96Y + 1 &=& 0 \end{array}

And so g 2 ( Y ) : = 256 Y 4 576 Y 3 + 416 Y 2 96 Y + 1 g_2(Y) := 256Y^4 - 576Y^3 + 416Y^2 - 96Y + 1 has roots cos 2 ( 2 π 15 ) , cos 2 ( 4 π 15 ) , cos 2 ( 8 π 15 ) , cos 2 ( π 15 ) \cos^2( \tfrac{2\pi}{15}) , \cos^2( \tfrac{4\pi}{15}) , \cos^2( \tfrac{8\pi}{15}) , \cos^2( \tfrac{\pi}{15}) .

Furthermore, g 3 ( Y ) : = Y 4 g 2 ( 1 Y ) = Y 4 96 Y 3 + 416 Y 2 576 Y + 256 g_3 (Y) := Y^4 \cdot g_2 (\tfrac 1Y) = Y^4 - 96Y^3 + 416Y^2 - 576Y + 256 has roots sec 2 ( 2 π 15 ) , sec 2 ( 4 π 15 ) , sec 2 ( 8 π 15 ) , sec 2 ( π 15 ) \sec^2( \tfrac{2\pi}{15}) , \sec^2( \tfrac{4\pi}{15}) , \sec^2( \tfrac{8\pi}{15}) , \sec^2( \tfrac{\pi}{15}) .

Using the identity, we sec 2 ( Z ) 1 = tan 2 ( Z ) \sec^2 (Z) - 1 = \tan^2(Z) , we have

f ( Y ) = g 3 ( Y + 1 ) = ( Y + 1 ) 4 96 ( Y + 1 ) 3 + 416 ( Y + 1 ) 2 576 ( Y + 1 ) + 256 = Y 4 92 Y 3 + 134 Y 2 28 Y + 1 \begin{array} { r c l } f (Y) = g_3(Y+ 1) &=& (Y+1)^4 - 96(Y+1)^3 + 416(Y+1)^2 - 576(Y+1) + 256 \\ &=& Y^4 - 92Y^3 + 134Y^2 - 28Y + 1 \end{array} has roots tan 2 ( 2 π 15 ) , tan 2 ( 4 π 15 ) , tan 2 ( 8 π 15 ) , tan 2 ( π 15 ) . \tan^2( \tfrac{2\pi}{15}) , \tan^2( \tfrac{4\pi}{15}) , \tan^2( \tfrac{8\pi}{15}) , \tan^2( \tfrac{\pi}{15}). Hence, ( A , B , C , D ) = ( 92 , 134 , 28 , 1 ) A + 2 B + 3 C + 4 D = 96 . (A,B,C,D) = (-92,134,28,1) \Rightarrow A+2B+3C+4D = \boxed{96} .

Wow, great solution!

David Vreken - 7 months, 1 week ago

That is an absolutely genius solution!

Chris Lewis - 7 months, 1 week ago
David Vreken
Nov 5, 2020

Using the identity tan 3 x = tan ( 60 ° x ) tan x tan ( 60 ° + x ) \tan 3x = \tan (60° - x) \tan x \tan (60° + x) , if x = 6 ° x = 6° , then tan 18 ° = tan 54 ° tan 6 ° tan 66 ° \tan 18° = \tan 54° \tan 6° \tan 66° , and since tan 18 ° = 1 tan 72 ° \tan 18° = \frac{1}{\tan 72°} and tan 54 ° = 1 tan 36 ° \tan 54° = \frac{1}{\tan 36°} , this can be rearranged to tan 36 ° = tan 6 ° tan 66 ° tan 72 ° \tan 36° = \tan 6° \tan 66° \tan 72° .

Using the identity tan 5 x = tan ( 72 ° x ) tan ( 36 ° x ) tan x tan ( 36 ° + x ) tan ( 72 ° + x ) \tan 5x = \tan (72° - x) \tan (36° - x) \tan x \tan (36° + x) \tan (72° + x) , if x = 6 ° x = 6° , then tan 30 ° = tan 66 ° tan 30 ° tan 6 ° tan 42 ° tan 78 ° \tan 30° = \tan 66° \tan 30° \tan 6° \tan 42° \tan 78° , and since tan 42 ° = 1 tan 48 ° \tan 42° = \frac{1}{\tan 48°} and tan 78 ° = 1 tan 12 ° \tan 78° = \frac{1}{\tan 12°} , this can be rearranged to tan 6 ° tan 66 ° = tan 12 ° tan 48 ° \tan 6° \tan 66° = \tan 12° \tan 48° .

Combining these two equations gives tan 36 ° = tan 12 ° tan 48 ° tan 72 ° \tan 36° = \tan 12° \tan 48° \tan 72° , so that tan 3 θ = tan θ tan 4 θ tan 6 θ \tan 3 \theta = \tan \theta \tan 4\theta \tan 6\theta is true for θ = 12 ° \theta = 12° .

Since tan 36 ° = tan 6 ° tan 66 ° tan 72 ° \tan 36° = \tan 6° \tan 66° \tan 72° is equivalent to tan 36 ° = tan 6 ° tan 66 ° tan 72 ° -\tan 36° = -\tan 6° \tan 66° \tan 72° , and since tan 6 ° = 1 tan 96 ° -\tan 6° = \frac{1}{\tan 96°} and tan 36 ° = tan 144 ° -\tan 36° = \tan 144° , this can be rearranged to tan 72 ° = tan 24 ° tan 96 ° tan 144 ° \tan 72° = \tan 24° \tan 96° \tan 144° , so that tan 3 θ = tan θ tan 4 θ tan 6 θ \tan 3 \theta = \tan \theta \tan 4\theta \tan 6\theta is true for θ = 24 ° \theta = 24° .

Since tan 36 ° = tan 12 ° tan 48 ° tan 72 ° \tan 36° = \tan 12° \tan 48° \tan 72° is equivalent to tan 36 ° = tan 12 ° tan 48 ° ( tan 72 ° ) -\tan 36° = \tan 12° \tan 48° (-\tan 72°) , and since tan 36 ° = tan 144 ° -\tan 36° = \tan 144° , tan 12 ° = tan 192 ° \tan 12° = \tan 192° , and tan 72 ° = tan 288 ° -\tan 72° = \tan 288° , this can be rearranged to tan 144 ° = tan 48 ° tan 192 ° tan 288 ° \tan 144° = \tan 48° \tan 192° \tan 288° , so that tan 3 θ = tan θ tan 4 θ tan 6 θ \tan 3 \theta = \tan \theta \tan 4\theta \tan 6\theta is true for θ = 48 ° \theta = 48° .

Since tan 36 ° = tan 6 ° tan 66 ° tan 72 ° \tan 36° = \tan 6° \tan 66° \tan 72° is equivalent to tan 36 ° = ( tan 6 ° ) tan 66 ° ( tan 72 ° ) \tan 36° = (-\tan 6°) \tan 66° (-\tan 72°) , and since tan 36 ° = tan 576 ° \tan 36° = \tan 576° , tan 6 ° = 1 tan 96 ° -\tan 6° = \frac{1}{\tan 96°} , tan 66 ° = 1 tan 384 ° \tan 66° = \frac{1}{\tan 384°} , and tan 72 ° = tan 288 ° -\tan 72° = \tan 288° , this can be rearranged to tan 288 ° = tan 96 ° tan 384 ° tan 576 ° \tan 288° = \tan 96° \tan 384° \tan 576° , so that tan 3 θ = tan θ tan 4 θ tan 6 θ \tan 3 \theta = \tan \theta \tan 4\theta \tan 6\theta is true for θ = 96 ° \theta = 96° .

Using the tangent identity equations with t = tan θ t = \tan \theta :

tan 2 θ = 2 tan θ 1 tan 2 θ = 2 t 1 t 2 \tan 2\theta = \cfrac{2\tan \theta}{1 - \tan^2 \theta} = \cfrac{2t}{1 - t^2}

tan 3 θ = tan ( 2 θ + θ ) = tan 2 θ + tan θ 1 tan 2 θ tan θ = 2 t 1 t 2 + t 1 ( 2 t 1 t 2 ) t = t ( t 2 3 ) 3 t 2 1 \tan 3\theta = \tan (2\theta + \theta) = \cfrac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta} = \cfrac{\frac{2t}{1 - t^2} + t}{1 - (\frac{2t}{1 - t^2}) t} = \cfrac{t(t^2 - 3)}{3t^2 - 1}

tan 4 θ = tan 2 ( 2 θ ) = 2 tan 2 θ 1 tan 2 2 θ = 2 ( 2 t 1 t 2 ) 1 ( 2 t 1 t 2 ) 2 = 4 t ( 1 t 2 ) t 4 6 t 2 + 1 \tan 4\theta = \tan 2(2 \theta) = \cfrac{2 \tan 2\theta}{1 - \tan^2 2\theta} = \cfrac{2 (\frac{2t}{1 - t^2})}{1 - (\frac{2t}{1 - t^2})^2} = \cfrac{4t(1 - t^2)}{t^4 - 6t^2 + 1}

tan 6 θ = tan 2 ( 3 θ ) = 2 tan 3 θ 1 tan 2 3 θ = 2 ( t ( t 2 3 ) 3 t 2 1 ) 1 ( t ( t 2 3 ) 3 t 2 1 ) 2 = 2 t ( t 2 3 ) ( 3 t 2 1 ) ( 1 t ) ( 1 + t ) ( t 2 4 t + 1 ) ( t 2 + 4 t + 1 ) \tan 6\theta = \tan 2(3\theta) = \cfrac{2 \tan 3\theta}{1 - \tan^2 3\theta} = \cfrac{2 (\frac{t(t^2 - 3)}{3t^2 - 1})}{1 - (\frac{t(t^2 - 3)}{3t^2 - 1})^2} = \cfrac{2t(t^2 - 3)(3t^2 - 1)}{(1 - t)(1 + t)(t^2 - 4t + 1)(t^2 + 4t + 1)}

Substituting these into tan 3 θ = tan θ tan 4 θ tan 6 θ \tan 3\theta = \tan \theta \tan 4\theta \tan 6\theta gives t ( t 2 3 ) 3 t 2 1 = t 4 t ( 1 t 2 ) t 4 6 t 2 + 1 2 t ( t 2 3 ) ( 3 t 2 1 ) ( 1 t ) ( 1 + t ) ( t 2 4 t + 1 ) ( t 2 + 4 t + 1 ) \cfrac{t(t^2 - 3)}{3t^2 - 1} = t \cdot \cfrac{4t(1 - t^2)}{t^4 - 6t^2 + 1} \cdot \cfrac{2t(t^2 - 3)(3t^2 - 1)}{(1 - t)(1 + t)(t^2 - 4t + 1)(t^2 + 4t + 1)} , which rearranges and simplifies to t 8 92 t 6 + 134 t 4 28 t 2 + 1 = 0 t^8 - 92t^6 + 134t^4 - 28t^2 + 1 = 0 . Substituting x = t 2 x = t^2 gives x 4 92 x 3 + 134 x 2 28 x + 1 = 0 x^4 - 92x^3 + 134x^2 - 28x + 1 = 0 , which has the desired solutions of x = tan 2 12 ° x = \tan^2 12° , x = tan 2 24 ° x = \tan^2 24° , x = tan 2 48 ° x = \tan^2 48° , and x = tan 2 96 ° x = \tan^2 96° .

Therefore, A = 92 A = -92 , B = 134 B = 134 , C = 28 C = -28 , D = 1 D = 1 , and A + 2 B + 3 C + 4 D = 96 A + 2B + 3C + 4D = \boxed{96} .

You have written the triple angle formula tan 3 x = tan ( 60 ° x ) tan x tan ( 60 ° + x ) \tan 3x = \tan (60° - x) \tan x \tan (60° + x) and the quintuple angle formula: tan 5 x = tan ( 72 ° x ) tan ( 36 ° x ) tan x tan ( 36 ° + x ) tan ( 72 ° + x ) \tan 5x = \tan (72° - x) \tan (36° - x) \tan x \tan (36° + x) \tan (72° + x)

I only knew about the former identitym, not the latter identity. Can we generalize this to the ( 2 n + 1 ) (2n+1) -tuple angle formula as well? Like is there a septuple angle formula, nonuple angle formula by expressing tan [ ( 2 n + 1 ) x ] \tan[(2n+1)x] in terms of product of tan ( x + k i ) \tan(x + k_i ) for constants k i k_i .

Pi Han Goh - 7 months, 1 week ago

Log in to reply

I found the tan 5 x \tan 5x equation here . There's a short proof for it there that I must admit I don't quite follow, but maybe it can be generalized to other ( 2 n + 1 ) (2n + 1) -tuple angles, which appears to be:

tan ( 2 n + 1 ) x = ( 1 ) n k = 1 2 n + 1 tan ( x + ( k n 1 ) 180 ° 2 n + 1 ) \tan (2n + 1)x = (-1)^n \prod_{k=1}^{2n + 1} \tan\bigg(x + \cfrac{(k - n - 1)180°}{2n + 1}\bigg)

for positive integers n n .

David Vreken - 7 months, 1 week ago

Log in to reply

Log in to reply

@Pi Han Goh Oops! I adjusted the equation with ( 1 ) n (-1)^n . Try that.

David Vreken - 7 months, 1 week ago

Log in to reply

@David Vreken Nope, not true either.

Pi Han Goh - 7 months, 1 week ago

Log in to reply

Log in to reply

@David Vreken Whoopsies. \quad

Pi Han Goh - 7 months, 1 week ago

Haha, I just spent 4 hours trying to prove this identity but I got nothing.

Maybe @Mark Hennings can save the day again. I won't mind posting a note about it .

Pi Han Goh - 7 months, 1 week ago

Log in to reply

@Pi Han Goh Yes, a note would be good

David Vreken - 7 months, 1 week ago

Log in to reply

@David Vreken Done .

Pi Han Goh - 7 months, 1 week ago

Log in to reply

@Pi Han Goh Thanks a lot!

David Vreken - 7 months, 1 week ago

I was expecting your solution to be using some cyclic quadrilateral proof because 1 2 + 2 4 + 4 8 + 9 6 = 18 0 12^\circ+24^\circ+48^\circ+96^\circ=180^\circ .

But it's still quite an eye-opener. I don't know the motivation behind setting up tan ( 3 θ ) = tan ( θ ) tan ( 4 θ ) tan ( 6 θ ) \tan(3\theta) = \tan(\theta) \tan(4\theta) \tan(6\theta) in the first place. It appears to come out of nowhere.

Pi Han Goh - 7 months, 1 week ago

Log in to reply

It was mostly a result of some math "doodling" I was doing. Using the tan 3 x \tan 3x and tan 5 x \tan 5x equations, I came up with tan 36 ° = tan 12 ° tan 48 ° tan 72 ° \tan 36° = \tan 12° \tan 48° \tan 72° (as shown in my solution). I thought it was unusual that all the angles were multiples of 12 12 , so I wondered what other angles fulfilled the equation tan 3 θ = tan θ tan 4 θ tan 6 θ \tan 3\theta = \tan \theta \tan 4\theta \tan 6\theta and came up with the above problem.

I did notice that 12 ° + 24 ° + 48 ° + 96 ° = 180 ° 12° + 24° + 48° + 96° = 180° , but I'm not sure if that was just a coincidence. Another fun fact is that the roots of f ( x ) = x 4 92 x 3 + 134 x 2 28 x + 1 f(x) = x^4 - 92x^3 + 134x^2 - 28x + 1 include all solutions of tan 2 2 n 12 ° \tan^2 2^n \cdot 12° for integers n 0 n \geq 0 , since the angles just repeat themselves modulus 180 ° 180° .

David Vreken - 7 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...