There Are Cancellations?

Algebra Level 3

a n = 1 + ( 1 + 1 n ) 2 + 1 + ( 1 1 n ) 2 \large a_n=\sqrt{ 1+\left(1+\dfrac{1}{n} \right)^2 }+\sqrt{ 1+\left(1-\dfrac{1}{n} \right)^2 }

Consider a sequence a n a_n , n 1 n\geq1 as defined above. Compute 1 a 1 + 1 a 2 + + 1 a 20 \dfrac{1}{a_1}+\dfrac{1}{a_2}+\cdots+\dfrac{1}{a_{20}} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Mar 17, 2016

1 a n = 1 1 + ( 1 + 1 n ) 2 + 1 + ( 1 1 n ) 2 \dfrac{1}{a_n}=\dfrac{1}{\sqrt{ 1+\left(1+\dfrac{1}{n} \right)^2 }+\sqrt{ 1+\left(1-\dfrac{1}{n} \right)^2 }} Rationalising we get :- = n ( 1 + ( 1 + 1 n ) 2 1 + ( 1 1 n ) 2 ) 4 =\dfrac{n\left(\sqrt{ 1+\left(1+\dfrac{1}{n} \right)^2 }-\sqrt{ 1+\left(1-\dfrac{1}{n} \right)^2 }\right)}{4} = 1 4 ( 2 n 2 + 2 n + 1 2 n 2 2 n + 1 ) =\dfrac 14\left(\sqrt{2n^2+2n+1}-\sqrt{2n^2-2n+1}\right) We have to find S = n = 1 20 1 a n \mathbf{S}=\displaystyle\sum_{n=1}^{20}\dfrac{1}{a_n} S = 1 4 ( ( 5 1 ) + ( 13 5 ) + ( 25 13 ) + ( 841 761 ) ) \therefore\large \mathbf{S}=\dfrac 14\left( \begin{aligned} & ~~~~~\left(\cancel{\color{#3D99F6}{\sqrt{5}}}-\sqrt 1\right)\\&+\left(\cancel{\color{#D61F06}{\sqrt{ 13}}}-\cancel{\color{#3D99F6}{\sqrt 5}}\right)\\&+\left(\cancel{\color{#456461}{\sqrt{25}}}-\cancel{\color{#D61F06}{\sqrt{13}}}\right) \\&\cdots\\&\cdots\\&\cdots\\&+\left(\sqrt{841}-\cancel{\color{#EC7300}{\sqrt{761}}}\right)\end{aligned} \right) A T e l e s c o p i c S e r i e s \color{#302B94}{\mathbf{A ~Telescopic ~Series}} = 1 4 ( 841 1 ) = 7 =\dfrac 14\left(\sqrt{841}-\sqrt 1\right)=\Huge\color{#456461}{\boxed{\color{#EC7300}{\boxed{\color{#0C6AC7}{\mathbf{7}}}}}}

Nicely done!

Akshat Sharda - 5 years, 3 months ago

Log in to reply

T H A N K S ! \huge\mathbf{\color{#D61F06}{T}\color{#3D99F6}{H}\color{#EC7300}{A}\color{#20A900}{N}\color{#69047E}{K}\color{#E81990}{S}}\color{#624F41}{!}

Rishabh Jain - 5 years, 3 months ago

Log in to reply

Oh! Really colourful! Great!

Akshat Sharda - 5 years, 3 months ago

Will you be giving JEE this year?

Kushagra Sahni - 5 years, 2 months ago

Log in to reply

@Kushagra Sahni Yes.. ..................

Rishabh Jain - 5 years, 2 months ago

Log in to reply

@Rishabh Jain How were your 12th exams? And which institute do you go to?

Kushagra Sahni - 5 years, 2 months ago

Log in to reply

@Kushagra Sahni RG here in Ajmer only. And yes the 12th exams were good..

Rishabh Jain - 5 years, 2 months ago

You don't even need to evaluate the radicands for indicating that the series telescopes, just use the identity n 2 + n + 1 = ( n + 1 ) 2 ( n + 1 ) + 1 n^{2}+n+1\,=\,(n+1)^{2}-(n+1)+1 . Use this identity to express both the terms in the same structure and then shift the limits of sigma notation.

Aditya Sky - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...