Taylor made

Calculus Level 5

Find f ( 2016 ) ( 0 ) 2016 ! \dfrac{f^{(2016)}(0)}{2016!} for f ( x ) = x 3 ( 1 x ) 3 ( 1 + x + x 2 ) f(x)=\dfrac{x^3}{(1-x)^3(1+x+x^2)} .

Clarifications :

  • f ( k ) ( x ) f^{(k)}(x) denotes the k th k^\text{th} derivative of f ( x ) f(x) .

  • ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 677040.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mark Hennings
May 2, 2016

We want the coefficient C N C_N of x N x^N in the series expansion (for x < 1 |x| < 1 ) of f ( x ) = x 3 ( 1 x ) 3 ( 1 + x + x 2 ) = x 3 ( 1 x ) 2 ( 1 x 3 ) = ( n = 0 ( n + 1 ) x n ) ( m = 1 x 3 m ) = n = 0 m = 1 ( n + 1 ) x n + 3 m \begin{array}{rcl} f(x) & = & \displaystyle \frac{x^3}{(1-x)^3(1+x+x^2)} \; = \; \frac{x^3}{(1-x)^2(1-x^3)} \\ & = & \displaystyle \left(\sum_{n=0}^\infty (n+1)x^n\right)\left(\sum_{m=1}^\infty x^{3m}\right) \; = \; \sum_{n=0}^\infty \sum_{m=1}^\infty (n+1)x^{n+3m} \end{array} and hence C N = m = 1 1 3 N ( N 3 m + 1 ) = 1 3 N ( N + 1 ) 3 2 1 3 N ( 1 3 N + 1 ) = 1 2 1 3 N ( 2 ( N + 1 ) 3 ( 1 3 N + 1 ) ) = 1 2 1 3 N ( 2 N 1 3 1 3 N ) \begin{array}{rcl} C_N & = & \displaystyle \sum_{m=1}^{\lfloor \frac13N\rfloor} (N - 3m + 1) \\ & = & \displaystyle \lfloor \tfrac13N\rfloor (N+1) - \tfrac32\lfloor \tfrac13N\rfloor\big(\lfloor \tfrac13N\rfloor + 1\big) \\ & = & \displaystyle \tfrac12\lfloor \tfrac13N\rfloor\Big(2(N+1) - 3\big(\lfloor \tfrac13N\rfloor + 1\big)\Big) \\ & = & \displaystyle \tfrac12\lfloor \tfrac13N\rfloor\Big(2N - 1 - 3\lfloor \tfrac13N\rfloor\Big) \end{array} Since 2016 = 3 × 672 2016 =3 \times672 , the answer is C 2016 = 677040 C_{2016} = \boxed{677040} .

Yes, this is what I had in mind, although I would write it up in a less formal way ;) I will post my "sloppy" solution tonight if I get to it.

Otto Bretscher - 5 years, 1 month ago
Abdelhamid Saadi
May 3, 2016

I've used another approche:

Let ω \omega and ω ˉ \bar \omega be the complex roots of 1 + x + x 2 = 0 1 + x + x^2 = 0 18 f ( x ) = 18 x 3 ( 1 x ) 3 ( 1 + x + x 2 ) = 2 ( ω x ) 1 2 ( ω ˉ x ) 1 + 4 ( 1 x ) 1 12 ( 1 x ) 2 + 6 ( 1 x ) 3 \begin{array}{rcl} 18f(x) & = & \displaystyle \frac{18x^3}{(1-x)^3(1+x+x^2)} \\ & = & \displaystyle -2(\omega -x)^{-1} -2(\bar \omega -x)^{-1} +4(1 -x)^{-1} -12(1 -x)^{-2} +6(1 -x)^{-3} \end{array}

By recurrence we can see that: ( 2 ( ω x ) 1 ) ( n ) = n ! ( 2 ( ω x ) ( n + 1 ) ) ( 2 ( ω ˉ x ) 1 ) ( n ) = n ! ( 2 ( ω ˉ x ) ( n + 1 ) ) ( 4 ( 1 x ) 1 ) ( n ) = n ! ( 4 ( 1 x ) ( n + 1 ) ) ( 12 ( 1 x ) 2 ) ( n ) = n ! ( 12 ( n + 1 ) ( 1 x ) ( n + 2 ) ) ( 6 ( 1 x ) 3 ) ( n ) = n ! ( 3 ( n + 1 ) ( n + 2 ) ( 1 x ) ( n + 3 ) ) \begin{array}{rcl} ({-2(\omega -x)^{-1}})^{(n)} & = & \displaystyle n!( -2(\omega -x)^{-(n+1)}) \\ ({-2(\bar \omega -x)^{-1}})^{(n)} & = & \displaystyle n!( -2(\bar \omega -x)^{-(n+1)}) \\ ({4(1 -x)^{-1}})^{(n)} & = & \displaystyle n!( 4(1 -x)^{-(n+1)}) \\ ({-12(1 -x)^{-2}})^{(n)} & = & \displaystyle n!( -12(n+1)(1 -x)^{-(n+2)}) \\ ({6(1 -x)^{-3}})^{(n)} & = & \displaystyle n!( 3(n+1)(n+2)(1 -x)^{-(n+3)}) \end{array}

So that:

18 f ( n ) ( 0 ) n ! = 2 ( ω ( n + 1 ) + ω ˉ ( n + 1 ) ) + 4 12 ( n + 1 ) + 3 ( n + 1 ) ( n + 2 ) = 2 ( ω ( n + 1 ) + ω ˉ ( n + 1 ) + 1 ) + 6 12 ( n + 1 ) + 3 ( n + 1 ) ( n + 2 ) = 2 ( ω ( n + 1 ) + ω ˉ ( n + 1 ) + 1 ) + 3 n ( n 1 ) \begin{array}{rcl} 18\frac {{f}^{(n)} (0)} {n!}& = & \displaystyle -2({\omega}^{-(n+1)} +{\bar \omega}^{-(n+1)}) + 4 -12(n+1) +3(n+1)(n+2) \\ & = & \displaystyle -2({\omega}^{-(n+1)} +{\bar \omega}^{-(n+1) } +1) + 6 -12(n+1) +3(n+1)(n+2) \\ & = & \displaystyle -2({\omega}^{-(n+1)} +{\bar \omega}^{-(n+1) } +1) + 3n(n-1) \end{array}

knowing : ω ( n + 1 ) + ω ˉ ( n + 1 ) + 1 = 3 f o r n 2 ( m o d 3 ) = 0 o t h e r w i s e \begin{array}{rcl} {\omega}^{-(n+1)} +{\bar \omega}^{-(n+1) } + 1 & = & 3 \displaystyle \quad for \quad n \equiv 2 \pmod 3\\ & = & 0\quad otherwise \end{array}

And finally: f ( n ) ( 0 ) n ! = ( n + 1 ) ( n 2 ) 6 f o r n 2 ( m o d 3 ) = n ( n 1 ) 6 o t h e r w i s e \begin{array}{rcl} \displaystyle \frac {{f}^{(n)} (0)} {n!} & = & \displaystyle \frac{(n+1)(n-2)}{6} \quad for \quad n \equiv 2 \pmod 3 \\ & = & \displaystyle \frac{n(n-1)}{6} \quad otherwise \end{array}

Yes, that's another sensible approach! Quite a bit of work, though... ;)

Otto Bretscher - 5 years, 1 month ago

Log in to reply

I agree a lot of work, but if offers a more systematic way to reach the result.

By the way, English is my third language and French is my second.

So sometimes my approach can be "plus proche" to French.

Abdelhamid Saadi - 5 years, 1 month ago

Log in to reply

I'm in the same boat: English is my third language and French is my second. I assume that our first languages are different, though ;)

I must confess that I do not have the patience to write a solution like yours. I'm always looking for short-cuts and for an "easy way out." When things get too technical and messy, I lose interest. The "systematic" solution is not always the most beautiful.

It's good that people take different approaches... it keeps things interesting.

Otto Bretscher - 5 years, 1 month ago

Log in to reply

@Otto Bretscher I did it just for the seek of varieties.

I must confess that decomposing a rational is very tedious, so I was forced to use some software to achieve it. Things become easier from that point.

I love the way you write your solution, always focusing on the essence of proof and avoiding the formalism that could hide the beauty of the concept.

Abdelhamid Saadi - 5 years, 1 month ago
Otto Bretscher
May 2, 2016

The solution I had in mind is similar to Mark's. For the sake of variety, let me write up a more informal version. Let's start with the geometric series x 3 1 x 3 = x 3 + x 6 + x 9 + . . . . \frac{x^3}{1-x^3}=x^3+x^6+x^9+....

If A ( x ) = n = 0 a n x n A(x)=\sum_{n=0}^{\infty}a_nx^n then A ( x ) 1 x = n = 0 ( k = 0 n a k ) x n \frac{A(x)}{1-x}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}a_k\right)x^n : the coefficients of the power series of A ( x ) 1 x \frac{A(x)}{1-x} are the partial sums of the coefficients of the power series of A ( x ) A(x) . We will use this principle twice to get what we need: x 3 ( 1 x ) ( 1 x 3 ) = x 3 + x 4 + x 5 + 2 x 6 + 2 x 7 + 2 x 8 + 3 x 9 + . . . + 671 x 2015 + 672 x 2016 + . . . \frac{x^3}{(1-x)(1-x^3)}=x^3+x^4+x^5+2x^6+2x^7+2x^8+3x^9+...+671x^{2015}+672x^{2016}+...

(As Mark states, the coefficient of x n x^n turns out to be the integer part of n 3 \frac{n}{3} .)

Now the coefficient of x 2016 x^{2016} in f ( x ) = x 3 ( 1 x ) 2 ( 1 x 3 ) = x 3 ( 1 x ) 3 ( 1 + x + x 2 ) f(x)=\frac{x^3}{(1-x)^2(1-x^3)}=\frac{x^3}{(1-x)^3(1+x+x^2)} is 3 k = 1 671 k + 672 = 677040 3\sum_{k=1}^{671}k+672=\boxed{677040}

Shivansh Kaul
May 18, 2017

Let g ( x ) = f ( x ) . ( 1 + x + x 2 ) = ( x 1 x ) 3 g(x) = f(x).(1 + x + x^2)= ({\frac{x}{1-x}})^3 \hspace{3cm} then g ( x ) = ( 1 1 x 1 ) 3 = 1 ( x 1 ) 3 1 3 ( x 1 ) 2 3 x 1 g(x)=({\frac{1}{1-x} - 1})^3 = - \frac{1}{(x-1)^3} -1 -\frac{3}{(x-1)^2} -\frac{3}{x-1} \hspace{10cm} Now differentiate g ( x ) g(x) n times wrt x x and put x = 0 x=0 , \hspace{8cm} g n ( 0 ) = ( n + 2 ) ! 2 3. ( n + 1 ) ! + 3. n ! = ( n 1 ) ( n 2 ) . n ! 2 g^n(0)=\frac{(n+2)!}{2}-3.(n+1)!+3.n!= \frac{(n-1)(n-2).n!}{2} \hspace{3cm} and also, g n ( x ) = f n ( x ) ( 1 + x + x 2 ) + n ( 1 + 2 x ) f n 1 ( x ) + n ( n 1 ) f n 2 ( x ) g^n(x)=f^n(x)(1+x+x^2)+n(1+2x)f^{n-1}(x)+n(n-1)f^{n-2}(x) \hspace{2cm} (see for yourselves!) g n ( 0 ) = f n ( 0 ) + n f n 1 ( 0 ) + n ( n 1 ) f n 2 ( 0 ) g^n(0)=f^n(0)+nf^{n-1}(0)+n(n-1)f^{n-2}(0) \hspace{10cm} Further observe, g n ( 0 ) n g n 1 ( 0 ) = f n ( 0 ) n ( n 1 ) ( n 2 ) f n 3 ( 0 ) = ( n 2 ) . n ! g^n(0)-ng^{n-1}(0)=f^n(0)-n(n-1)(n-2)f^{n-3}(0)=(n-2).n! \hspace{4cm} Divide both sides by n ! n! to get, f n ( 0 ) n ! f n 3 ( 0 ) ( n 3 ) ! = n 2 \frac{f^n(0)}{n!}-\frac{f^{n-3}(0)}{(n-3)!}=n-2
Sum up the above equation from n = 3 n=3 to n = 2016 n=2016 to get
f 2016 ( 0 ) 2016 ! f ( 0 ) 0 ! = 1 + 4 + 7 + . . . + 2014 \frac{f^{2016}(0)}{2016!}-\frac{f(0)}{0!}=1+4+7+...+2014
f 2016 ( 0 ) 2016 ! = 677040 \frac{f^{2016}(0)}{2016!}=677040


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...