Telescopic generations!

Algebra Level 5

n = 0 1947 1 2 n + 2 1947 = A 2 B . \large\ \sum _{ n=0 }^{ 1947 }{ \frac { 1 }{ { 2 }^{ n }+\sqrt { { 2 }^{ 1947 } } } } = \frac { A }{ \sqrt { { 2 }^{ B } } }.

The expression above holds true for some odd integer A A and positive integer B B . Find A + B A+B .


The answer is 2432.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 14, 2016

Let S m = n = 0 m 1 2 n + 2 m \displaystyle S_m = \sum_{n=0}^m \dfrac 1{2^n+\sqrt{2^m}} and let us check the first few S m S_m .

\(\begin{array} {} S_{\color{blue}0} = \dfrac 1{2^0+\sqrt{2^0}} = \dfrac 12 & = \dfrac {{\color{blue}0}+1}{\sqrt{2^{{\color{blue}0}+2}}} \\ S_{\color{blue}1} = \dfrac 1{1+\sqrt 2} + \dfrac 1{2+\sqrt 2} = \dfrac 1{\sqrt 2} & = \dfrac {{\color{blue}1}+1}{\sqrt{2^{{\color{blue}1}+2}}} \\ S_{\color{blue}2} = \dfrac 1{1+2} + \dfrac 1{2+2} + \dfrac 1{4+2} = \dfrac 34 & = \dfrac {{\color{blue}2}+1}{\sqrt{2^{{\color{blue}2}+2}}} \end{array} \)

It appears that we can claim that S m = m + 1 2 m + 2 S_{\color{#3D99F6}m} = \dfrac {{\color{#3D99F6}m}+1}{\sqrt{2^{{\color{#3D99F6}m}+2}}} . Let us prove by induction that the claim is true for all m 0 m \ge 0 .

Proof:

  • We already know that the claim is true for m = 0 m=0 and m = 1 m=1 .

  • Assuming that the claim is true for m m , then we have:

S m + 2 = n = 0 m + 2 1 2 n + 2 m + 2 = 1 1 + 2 m + 2 2 + n = 1 m + 1 1 2 n + 2 m + 2 2 + 1 2 m + 2 + 2 m + 2 2 = 1 2 m + 2 2 + 1 + 1 2 m + 2 2 ( 2 m + 2 2 + 1 ) + 1 2 n = 1 m + 1 1 2 n 1 + 2 m 2 = 2 m + 2 2 + 1 2 m + 2 2 ( 2 m + 2 2 + 1 ) + 1 2 n = 0 m 1 2 n + 2 m 2 = 1 2 m + 2 2 + 1 2 S m = 1 2 m + 2 + m + 1 2 2 m + 2 = m + 2 + 1 2 m + 2 + 2 \begin{aligned} \quad S_{\color{#3D99F6}m+2} & = \sum_{n=0}^{m+2} \frac 1{2^n+\sqrt{2^{m+2}}} \\ & = \frac 1{1+2^\frac {m+2}2} + \sum_{n={\color{#D61F06}1}}^{m+{\color{#D61F06}1}} \frac 1{2^n+2^\frac {m+2}2} + {\color{#3D99F6}\frac 1{2^{m+2}+2^\frac {m+2}2}} \\ & = \frac 1{2^\frac {m+2}2+1} + {\color{#3D99F6}\frac 1{2^\frac {m+2}2\left(2^\frac {m+2}2+1 \right)}} + \frac 12 \sum_{n=1}^{m+1} \frac 1{2^{n-1}+2^\frac m2} \\ & = \frac {2^\frac {m+2}2+1}{2^\frac {m+2}2\left(2^\frac {m+2}2+1 \right)} + \frac 12 \sum_{n={\color{#D61F06}0}}^{{\color{#D61F06}m}} \frac 1{2^n+2^\frac m2} \\ & = \frac 1{2^\frac {m+2}2} + \frac 12 S_m \\ & = \frac 1{\sqrt{2^{m+2}}} + \frac {m+1}{2 \sqrt{2^{m+2}}} \\ & = \frac {{\color{#3D99F6}m+2}+1}{ \sqrt{2^{{\color{#3D99F6}m+2}+2}}} \end{aligned}

So the claim is also true for m + 2 m+2 , since the claim is true for m = 0 m=0 , it is also true for all even m > 0 m>0 , likewise since it is true for m = 1 m=1 , it is also true for all odd m > 1 m>1 . Therefore, the claim is true for all m 0 m \ge 0 .

Therefore, S 1967 = 1948 2 1949 = 487 2 1945 A + B = 487 + 1945 = 2432 S_{1967} = \dfrac {1948}{\sqrt{2^{1949}}} = \dfrac {487}{\sqrt{2^{1945}}} \implies A+B = 487 + 1945 = \boxed{2432}

@Chew-Seong Cheong ,

Wow, its T H E R E A L B E A U T Y \color{#3D99F6}{THE \quad REAL \quad BEAUTY} .

Just cannot say how excellent is the proof and working.

Great job SIR!

If i had the power, then i would have upvoted your solution 2017 times.

Priyanshu Mishra - 4 years, 6 months ago

Log in to reply

Is there a telescopic solution?

Shaun Leong - 4 years, 5 months ago

Log in to reply

I don't think so. Otherwise Chew-Seong Cheong must have given the solution .

Priyanshu Mishra - 4 years, 5 months ago

i think there is a telescoping solution , this question is of kvpy , i think a couple of years back maybe , this has been posted previously on brilliant and there were telescoping solutions as well .

space sizzlers - 4 years, 5 months ago

Log in to reply

@Space Sizzlers KVPY 2012.

Can you give me the link where this question is present in Brilliant?

Priyanshu Mishra - 4 years, 5 months ago

Log in to reply

@Priyanshu Mishra alright i'll search for it

space sizzlers - 4 years, 5 months ago

@Priyanshu Mishra u can visit deepanshu guptas profile scroll down a bit u get the same question with different solutions

Zerocool 141 - 4 years, 4 months ago

this might help @Priyanshu Mishra

space sizzlers - 4 years, 5 months ago
Shreyash Rai
Dec 29, 2016

L e t a b e 2 1947 a n d l e t x b e 0 1947 1 a + 2 n ( t h e o r i g i n a l q u e s t i o n ) i f w e o b s e r v e t h i s s e r i e s f r o m b a c k w a r d s w e c a n r e w r i t e i t a s , 0 1947 1 a ( a 2 n + 1 ) = 2 n a ( a + 2 n ) = 1 a 1 a + 2 n = x 0 1947 1 a 0 1947 1 a + 2 n = x 1948 a = 2 x 974 a = x p u t t i n g i n t h e v a l u e o f a w e g e t x a n d h e n c e t h e r e q u i r e d a n s w e r . Let\quad a\quad be\quad \sqrt { { 2 }^{ 1947 } } \\ and\quad let\quad x\quad be\quad \sum _{ 0 }^{ 1947 }{ \frac { 1 }{ a\quad +\quad { 2 }^{ n } } } (\quad the\quad original\quad question)\\ if\quad we\quad observe\quad this\quad series\quad from\quad backwards\quad we\quad can\quad rewrite\quad it\quad as,\\ \sum _{ 0 }^{ 1947 }{ \frac { 1 }{ a(\frac { a }{ { 2 }^{ n } } +1) } } =\quad \frac { { 2 }^{ n } }{ a(a\quad +\quad { 2 }^{ n }) } =\quad \frac { 1 }{ a } -\quad \frac { 1 }{ a+{ 2 }^{ n } } =\quad x\\ \Rightarrow \quad \sum _{ 0 }^{ 1947 }{ \frac { 1 }{ a } } -\sum _{ 0 }^{ 1947 }{ \frac { 1 }{ a+{ 2 }^{ n } } } =\quad x\\ \Rightarrow \frac { 1948 }{ a } =\quad 2x\\ \Rightarrow \quad \frac { 974 }{ a } \quad =\quad x\\ putting\quad in\quad the\quad value\quad of\quad a\quad we\quad get\quad x\quad and\quad hence\quad the\quad required\quad answer.

Very brilliant approach +1

Navin Murarka - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...