Telescoping the Reciprocals!

Algebra Level 4

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + + 100 98 ! + 99 ! + 100 ! \begin{aligned} \frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \frac{5}{3!+4!+5!} + \cdots + \frac{100}{98!+99!+100!} \end{aligned}

Find the value of the expression above.

The answer is a form of 1 a ! 1 b ! \dfrac{1}{a!} - \dfrac{1}{b!} , where a a and b b are integers. Submit your answer as a × b a \times b .

Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


This problem is one of my set: Let's Practice .


The answer is 200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 16, 2017

S = 3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + + 100 98 ! + 99 ! + 100 ! = n = 1 98 n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = n = 1 98 ( n + 1 ) ( n + 2 ) n ! ( n + 1 ) + ( n + 1 ) ( n + 1 ) ! + ( n + 1 ) ( n + 2 ) ! = n = 1 98 ( n + 1 ) ( n + 2 ) ( n + 1 ) ! ( 1 + n + 1 ) + ( n + 1 ) ( n + 2 ) ! = n = 1 98 ( n + 1 ) ( n + 2 ) ( n + 2 ) ( n + 2 ) ! = n = 1 98 n + 1 ( n + 2 ) ! = n = 1 98 n + 2 1 ( n + 2 ) ! = n = 1 98 ( 1 ( n + 1 ) ! 1 ( n + 2 ) ! ) = 1 2 ! 1 100 ! \begin{aligned} S & = \frac 3{1!+2!+3!} + \frac 4{2!+3!+4!} + \frac 5{3!+4!+5!} + \cdots + \frac {100}{98!+99!+100!} \\ & = \sum_{n=1}^{98} \frac {n+2}{n!+(n+1)!+(n+2)!} \\ & = \sum_{n=1}^{98} \frac {{\color{#3D99F6}(n+1)}(n+2)}{n!{\color{#3D99F6}(n+1)}+{\color{#3D99F6}(n+1)}(n+1)!+{\color{#3D99F6}(n+1)}(n+2)!} \\ & = \sum_{n=1}^{98} \frac {(n+1)(n+2)}{(n+1)!(1+n+1)+(n+1)(n+2)!} \\ & = \sum_{n=1}^{98} \frac {(n+1)(n+2)}{(n+2)(n+2)!} \\ & = \sum_{n=1}^{98} \frac {n+1}{(n+2)!} \\ & = \sum_{n=1}^{98} \frac {n+2-1}{(n+2)!} \\ & = \sum_{n=1}^{98} \left( \frac 1{(n+1)!} - \frac 1{(n+2)!} \right) \\ & = \frac 1{2!} - \frac 1{100!} \end{aligned}

a × b = 2 × 100 = 200 \implies a \times b = 2 \times 100 = \boxed{200}

Brilliant!!

Mahdi Raza - 1 year, 2 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 1 year, 2 months ago

Now, note that 3 1 ! + 2 ! + 3 ! = 3 1 ! ( 1 + 2 + 2 × 3 ) \frac{3}{1!+2!+3!} = \frac{3}{1!(1+2+2 \times 3)}

3 1 ! × 9 = 1 3 = 2 3 × 2 × 1 \frac{3}{1! \times 9} = \frac{1}{3} = \frac{2}{3 \times 2 \times 1}

= 2 3 ! = 1 2 ! 1 3 ! = \frac{2}{3!} = \frac{1}{2!} - \frac{1}{3!} .

We have 3 1 ! + 2 ! + 3 ! = 1 2 ! 1 3 ! \frac{3}{1!+2!+3!} = \frac{1}{2!} - \frac{1}{3!}

Simplify each terms, we have

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + 5 3 ! + 4 ! + 5 ! + . . . + 100 98 ! + 99 ! + 100 ! \frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \frac{5}{3!+4!+5!} + ... + \frac{100}{98!+99!+100!}

= 1 2 ! 1 3 ! + 1 3 ! 1 4 ! + 1 4 ! 1 5 ! + . . . . . . . . 1 100 ! = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \frac{1}{4!} - \frac{1}{5!} + ........ - \frac{1}{100!}

After all, we have

1 2 ! 1 100 ! = 1 a ! 1 b ! \frac{1}{2!} - \frac{1}{100!} = \frac{1}{a!} - \frac{1}{b!}

a = 2 a=2 and b = 100 b=100 .

Hence, a × b = 200 a \times b = \boxed{200} .

Oh no, i answer my problem a + b a+b :(

Lesson to learn

Jason Chrysoprase - 4 years, 5 months ago

Log in to reply

Ahahaha.. Be careful..

Fidel Simanjuntak - 4 years, 5 months ago

Anyway, if you or someone is looking for proof that n = 1 k n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = 1 ( n + 1 ) ! 1 ( n + 2 ) ! \sum_{n=1}^{k} \frac{n+2}{n! + (n+1)! + (n+2)!} = \frac{1}{(n+1)!} - \frac{1}{(n+2)!} ,

here is it,

n = 1 k n + 2 n ! + ( n + 1 ) ! + ( n + 2 ) ! = n = 1 k n + 2 n ! ( 1 + n + 1 + ( n + 1 ) ( n + 2 ) ) = n = 1 k n + 2 n ! ( n + 2 ) ( n + 2 ) = n = 1 k 1 ( n + 2 ) ! n + 1 = n = 1 k n + 1 ( n + 2 ) ! = n = 1 k n + 2 1 ( n + 2 ) ! = n = 1 k n + 2 ( n + 2 ) ! 1 ( n + 2 ) ! = 1 ( n + 1 ) ! 1 ( n + 2 ) ! \begin{aligned} \sum_{n=1}^{k} \frac{n+2}{n! + (n+1)! + (n+2)!} &= \sum_{n=1}^{k} \frac{n+2}{n! ( 1 + n + 1 + (n+1)(n+2)) } \\ &= \sum_{n=1}^{k} \frac{n+2}{n! (n+2)(n+2) } \\ &= \sum_{n=1}^{k} \frac{1}{\frac{(n+2)!}{n+1}} \\ &= \sum_{n=1}^{k} \frac{n+1}{(n+2)!} \\ &= \sum_{n=1}^{k} \frac{n+2 - 1 }{(n+2)!} \\ &= \sum_{n=1}^{k} \frac{n+2}{(n+2)!} - \frac{1}{(n+2)!} \\ &= \frac{1}{(n+1)!} - \frac{1}{(n+2)!}\\ \end{aligned}

Jason Chrysoprase - 4 years, 5 months ago

Log in to reply

Nice! You are in grade 9 but you could do this proof. I don't even know how to operate the "sigma" sign, yet.

Fidel Simanjuntak - 4 years, 5 months ago

Log in to reply

It's easy though

n = 1 10 n = 1 + 2 + 3 + 4 + . . . + 10 \sum_{n=1}^{10} n = 1 + 2 + 3 + 4 + ... + 10

n = 0 29 n = 0 + 1 + . . . + 29 \sum_{n=0}^{29} n = 0 + 1 + ... + 29

n = 1 30 1 n = 1 1 + 1 2 + 1 3 + . . . + 1 30 \sum_{n=1}^{30} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{30}

That should make you understand

Jason Chrysoprase - 4 years, 5 months ago

Log in to reply

@Jason Chrysoprase Ahahahaa.. But i can't apply it. I don't know why. Btw,i already added your LINE contact

Fidel Simanjuntak - 4 years, 5 months ago

Log in to reply

@Fidel Simanjuntak Okay, i'll be back on LINE

Jason Chrysoprase - 4 years, 5 months ago

Log in to reply

@Jason Chrysoprase Okay, i'll wait for you.

Fidel Simanjuntak - 4 years, 5 months ago

@Fidel Simanjuntak Your name is Fidel Abel right ? Wrong ?

Jason Chrysoprase - 4 years, 5 months ago

Log in to reply

@Jason Chrysoprase Yeah, you can call me Fidel or Abel.

Fidel Simanjuntak - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...