That expression isn't even cyclic!

Algebra Level 4

( x y + z ) ( x z + y ) \large (xy+z)(xz+y)

Maximize the above expression, given x x , y y and z z are non-negative reals constrained by the condition x + y + z = 3 x+y+z=3 .


The answer is 4.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sharky Kesa
Jan 25, 2017

By AM-GM, we have

( x y + z ) ( x z + y ) ( x y + z ) + ( x z + y ) 2 = ( x + 1 ) ( y + z ) 2 1 2 ( ( x + 1 ) + ( y + z ) 2 ) 2 = 1 2 × 2 2 = 2 ( x y + z ) ( x z + y ) 4 \begin{aligned} \sqrt{(xy+z)(xz+y)} &\leq \dfrac{(xy+z)+(xz+y)}{2}\\ &= \dfrac {(x+1)(y+z)}{2}\\ &\leq \dfrac{1}{2} \left ( \dfrac{(x+1)+(y+z)}{2} \right )^2\\ &= \dfrac {1}{2} \times 2^2\\ &= 2\\ \implies (xy+z)(xz+y) &\leq 4 \end{aligned}

Thus, the maximum value of ( x y + z ) ( x z + y ) = 4 (xy+z)(xz+y) = 4 , attained at x + 1 = y + z x+1=y+z , or x = 1 x=1 , y + z = 2 y+z=2 .

Therefore, all equality cases are x = 1 x=1 , y [ 0 , 2 ] y \in [0,2] , z = 2 y z=2-y .

Can you explain the second and third line?

Fidel Simanjuntak - 4 years, 3 months ago

Log in to reply

Second line - I factorised. Third line - AM-GM.

Sharky Kesa - 4 years, 3 months ago

Log in to reply

I mean, how can you get ( x + 1 ) ( y + z ) 2 \dfrac{(x+1)(y+z)}{2} becomes 1 2 ( ( x + 1 ) + ( y + z ) 2 ) 2 \dfrac{1}{2} \left( \dfrac{ (x+1)+(y+z)}{2} \right)^{2} ?

Fidel Simanjuntak - 4 years, 3 months ago

Log in to reply

@Fidel Simanjuntak AM-GM in ( x + 1 ) ( y + z ) (x+1)(y+z) . Basically, we have by AM-GM:

( x + 1 ) + ( y + z ) 2 ( x + 1 ) ( y + z ) \dfrac{(x+1)+(y+z)}{2} \geq \sqrt{(x+1)(y+z)}

Rearrange, and you'll get the result.

Sharky Kesa - 4 years, 3 months ago

Log in to reply

@Sharky Kesa Oh, i see. After that, you square both sides, then multiply both sides with 1 2 \dfrac{1}{2} , right?

Fidel Simanjuntak - 4 years, 3 months ago
Kushal Bose
Jan 25, 2017

As x , y , z x,y,z are non-negative reals then we can apply A.M.-G.M. inequality

( x y + z ) + ( x z + y ) 2 ( x y + z ) ( x z + y ) ( x + 1 ) ( y + z ) 2 ( x y + z ) ( x z + y ) ( x + 1 ) ( 3 x ) 2 ( x y + z ) ( x z + y ) 3 + 2 x x 2 2 ( x y + z ) ( x z + y ) 4 ( x 1 ) 2 2 ( x y + z ) ( x z + y ) (xy+z) + (xz+y) \geq 2 \sqrt{(xy+z)(xz+y)} \\ \implies (x+1)(y+z) \geq 2 \sqrt{(xy+z)(xz+y)} \\ \implies (x+1)(3-x) \geq 2 \sqrt{(xy+z)(xz+y)} \\ \implies 3+2x-x^2 \geq 2 \sqrt{(xy+z)(xz+y)} \\ \implies 4-(x-1)^2 \geq 2 \sqrt{(xy+z)(xz+y)}

The maximum value can be attained if x 1 = 0 x = 1 x-1=0 \implies x=1 and y + z = 3 1 = 2 y+z=3-1=2

So, 2 s 4 s 4 2 \sqrt{s} \leq 4 \implies s \leq 4

( x y + z ) ( x z + y ) (xy+z)(xz+y) attains maximum at x = 1 x=1 and for all non-negative reals y , z y,z where y + z = 2 y+z=2

If x + y + z = 3 x + y + z = 3 , then x y z 1 xyz \geq 1 . So plug in x y = 1 z xy = \frac{1}{z} and x z = 1 y xz = \frac{1}{y} . Thence the expression above can be written as ( 1 z + z ) ( 1 y + y ) (\frac{1}{z} + z)(\frac{1}{y} + y) . Now by applying AM-GM inequality, we have z + 1 z 2 z × 1 z z + \frac{1}{z} \leq 2\sqrt{z \times \frac{1}{z}} and y + 1 y 2 y × 1 y y + \frac{1}{y} \leq 2\sqrt{y \times \frac{1}{y}} . Therefore ( x y + z ) ( x z + y ) 4 (xy + z)(xz + y) \leq 4 when x = y = z = 1 x = y = z = 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...