That is a long fraction!

Calculus Level 4

π = 2 sin ( t ) 2 sin ( t ) 2 sin ( t ) \large \pi = \frac{2}{\sin(t)-\frac{2}{\sin(t)-\frac{2}{\sin(t)-\dots}}}

The value of t t satisfying the equation above is given by:

t = 2 n π + π 2 + a ln ( b π + π + ( b π + π ) 2 + a ) i t = 2n\pi + \frac{\pi}{2}+a \ln \left( \frac{b}{\pi}+\pi+\sqrt{\left(\frac{b}{\pi}+\pi \right)^2+a} \right)i

where n n , a a , and b b are integers, and i = 1 i = \sqrt{-1} denotes the imaginary unit . Find a + b b \dfrac{a+b}{b} .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 29, 2020

2 sin t 2 sin t 2 sin t = π 2 sin t π = π sin t = 2 π + π e i t e i t 2 i = 2 π + π e 2 i t 2 i ( 2 π + π ) e i t 1 = 0 \begin{aligned} \frac 2{\sin t - \frac 2{\sin t - \frac 2{\sin t - \cdots}}} & = \pi \\ \frac 2{\sin t - \pi} & = \pi \\ \implies \sin t & = \frac 2\pi + \pi \\ \frac {e^{it}-e^{-it}}{2i} & = \frac 2\pi + \pi \\ e^{2it} - 2i \left(\frac 2\pi + \pi \right) e^{it} - 1 & = 0 \end{aligned}

e i t = 1 2 ( 2 i ( 2 π + π ) + 4 ( 2 π + π ) 2 + 4 ) = ( 2 π + π + ( 2 π + π ) 2 1 ) i = ( 2 π + π + ( 2 π + π ) 2 1 ) e ( 2 n π + π 2 ) i where n is an integer. i t = ln ( 2 π + π + ( 2 π + π ) 2 1 ) + ( 2 n π + π 2 ) i t = 2 n π + π 2 i ln ( 2 π + π + ( 2 π + π ) 2 1 ) \begin{aligned} \ \implies e^{it} & = \frac 12 \left(2i\left(\frac 2\pi + \pi \right) + \sqrt{-4\left(\frac 2\pi + \pi \right)^2+4}\right) \\ & = \left(\frac 2\pi + \pi + \sqrt{\left(\frac 2\pi + \pi \right)^2-1}\right) i \\ & = \left(\frac 2\pi + \pi + \sqrt{\left(\frac 2\pi + \pi \right)^2-1}\right) e^{\left(2\blue n\pi + \frac \pi 2\right)i} & \small \blue{\text{where }n \text{ is an integer.}} \\ it & = \ln \left(\frac 2\pi + \pi + \sqrt{\left(\frac 2\pi + \pi \right)^2-1}\right) + \left(2n\pi + \frac \pi 2\right)i \\ t & = 2n \pi + \frac \pi 2 - i \ln \left(\frac 2\pi + \pi + \sqrt{\left(\frac 2\pi + \pi \right)^2-1}\right) \end{aligned}

Therefore, a + b b = 1 + 2 2 = 0.5 \dfrac {a+b}b = \dfrac {-1+2}2 = \boxed{0.5} .

@James Watson , t t should have a real part 2 n π + π 2 2n \pi + \frac \pi 2 .

Chew-Seong Cheong - 10 months, 2 weeks ago

Log in to reply

yes have changed it so that only the principle value of t t matters

James Watson - 10 months, 2 weeks ago

Log in to reply

The principal value should also include the real part π 2 \frac \pi 2 .

Chew-Seong Cheong - 10 months, 2 weeks ago

Log in to reply

@Chew-Seong Cheong oh yeah, forgot. added that as well!

James Watson - 10 months, 2 weeks ago

Log in to reply

@James Watson I have amended your problem for you,

Chew-Seong Cheong - 10 months, 2 weeks ago

I guessed and somehow got the correct answer with what I believe to be my incorrect solution. Can someone inform me as to what I am missing?

The given fraction can be represented as π = 2 sin ( t ) π \pi = \frac{2}{\sin(t) - \pi} and, solving for sin ( t ) \sin(t) , we get sin ( t ) = 2 π + π \sin\left(t\right)=\frac{2}{\pi}+\pi . We can also use this fact to find cos ( t ) = 1 ( 2 π + π ) 2 \cos\left(t\right)=\sqrt{1-\left(\frac{2}{\pi}+\pi\right)^{2}} . Using Euler's Formula, e i t = cos ( t ) + i sin ( t ) = 1 ( 2 π + π ) 2 + i ( 2 π + π ) = i ( ( 2 π + π ) 2 1 + ( 2 π + π ) ) e^{it}=\cos\left(t\right)+i\sin\left(t\right)=\sqrt{1-\left(\frac{2}{\pi}+\pi\right)^{2}}+i\left(\frac{2}{\pi}+\pi\right) = i\left(\sqrt{\left(\frac{2}{\pi}+\pi\right)^{2}-1}+\left(\frac{2}{\pi}+\pi\right)\right) . Solving for t, we get i t = ln i ( i ( 2 π + π ) 2 1 + 2 π + π ) it = \ln i\left(i\sqrt{\left(\frac{2}{\pi}+\pi\right)^{2}-1}+\frac{2}{\pi}+\pi\right) or t = i ln i ( i ( 2 π + π ) 2 1 + 2 π + π ) t = -i\ln i\left(i\sqrt{\left(\frac{2}{\pi}+\pi\right)^{2}-1}+\frac{2}{\pi}+\pi\right) . From this point, I guessed that a = 1 a = -1 and b = 2 b = 2 , with an answer of 1 2 \boxed{\frac{1}{2}} .

Note that Wolfram Alpha gives the same result as above, alongside equivalent solution t = π / 2 i ln ( 2 π + π + 1 + ( 2 π + π ) 2 ) t = \pi/2 - i\ln(\frac{2}{\pi} + \pi + \sqrt{-1 + (\frac{2}{\pi} + \pi)^2}) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...