That's Plane Easy!

Calculus Level 2

0 ln ( x ) 1 + x 2 d x = ? \large \int_0^{\infty} \frac{\ln(x)}{1+x^{2}} \, dx = \ ?

Give your answer to 3 decimal places.


The answer is 0.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Abhishek Sinha
Aug 3, 2015

Just observe I = 0 ln ( x ) 1 + x 2 d x = 0 1 ln ( x ) 1 + x 2 d x + 1 ln ( x ) 1 + x 2 d x = I 1 + I 2 I=\int_{0}^\infty \frac{\ln(x)}{1+x^2} dx = \int_{0}^{1} \frac{\ln(x)}{1+x^2} dx + \int_{1}^\infty \frac{\ln(x)}{1+x^2} dx= I_1+I_2 Now making the substitution y = 1 x y=\frac{1}{x} in I 2 I_2 , we have I 2 = 1 0 ln ( 1 / y ) 1 + y 2 d y = 0 1 ln ( y ) 1 + y 2 d y = I 1 I_2=-\int_{1}^{0} \frac{\ln(1/y)}{1+y^2} dy=-\int_{0}^{1} \frac{\ln(y)}{1+y^2} dy=-I_1 Hence I = I 1 + I 2 = 0 I=I_1+I_2=0

Another method : Using the substitution x = tan θ x=\tan\theta , we have I = 0 ln ( x ) 1 + x 2 d x = 0 π / 2 ln ( tan θ ) d θ I=\int_{0}^\infty \frac{\ln(x)}{1+x^2} dx=\int_{0}^{\pi/2} \ln (\tan\theta) d\theta = 0 π / 2 ln ( sin θ ) d θ 0 π / 2 ln ( cos θ ) d θ = \int_{0}^{\pi/2} \ln (\sin\theta) d\theta - \int_{0}^{\pi/2} \ln (\cos\theta) d\theta = 0 π / 2 ln ( cos θ ) d θ 0 π / 2 ln ( cos θ ) d θ = 0 = \int_{0}^{\pi/2} \ln (\cos\theta) d\theta - \int_{0}^{\pi/2} \ln (\cos\theta) d\theta =0

Abhishek Sinha - 5 years, 10 months ago

Log in to reply

I'll just go with that

Caiden Cleveland - 5 years, 10 months ago

same method!!

Rohit Ner - 5 years, 10 months ago
Maggie Miller
Aug 3, 2015

Choose a branch cut of natural log in the lower half of the complex plane. Take ln ( z ) = z \ln(z)=|z| for z z on the positive real ray.

Then

ln ( z ) 1 + z 2 d z = 0 ln ( z ) 1 + z 2 d z + 0 ln ( z ) 1 + z 2 d z \displaystyle\int_{-\infty}^{\infty}\frac{\ln(z)}{1+z^2}dz=\int_{-\infty}^{0}\frac{\ln(z)}{1+z^2}dz+\int_{0}^{\infty}\frac{\ln(z)}{1+z^2}dz

= 0 ln ( z ) + π i 1 + z 2 d z + 0 ln ( z ) 1 + z 2 d z \displaystyle=\int_{-\infty}^{0}\frac{\ln(|z|)+\pi i}{1+z^2}dz +\int_{0}^{\infty}\frac{\ln(z)}{1+z^2}dz

= 0 π i 1 + z 2 d z + 2 0 ln ( z ) 1 + z 2 d z \displaystyle=\int_{0}^{\infty}\frac{\pi i}{1+z^2}dz+2\int_{0}^{\infty}\frac{\ln(z)}{1+z^2}dz . ( ) (\ast)

Let C C be a large semicircle above the real axis. Since ln ( z ) 1 + z 2 z 0 \frac{\ln(z)}{1+z^2}|z|\to 0 as z z becomes small, we may ignore the singularity at the origin by deforming C C among an arbitrarily small semicircle and apply Cauchy's integration formula to find find C ln ( z ) 1 + z 2 d z = 2 π i ln ( i ) 2 i = π 2 2 i \displaystyle\int_C\frac{\ln(z)}{1+z^2}dz=2\pi i \frac{\ln(i)}{2i}=\frac{\pi^2}{2}i .

Similarly, ln ( z ) 1 + z 2 z 0 \frac{\ln(z)}{1+z^2}|z|\to 0 as z z becomes large, so as the radius of C C becomes large the arc does not contribute to the integral and we find

ln ( z ) 1 + z 2 d z = π 2 2 i \displaystyle\int_{-\infty}^{\infty}\frac{\ln(z)}{1+z^2}dz=\frac{\pi^2}{2}i . ( ) (\ast \ast)

Moreover,

0 π i 1 + z 2 d z = lim b π i ( tan 1 ( b ) tan 1 ( 0 ) ) = π 2 2 i \displaystyle\int_{0}^{\infty}\frac{\pi i}{1+z^2}dz=\lim_{b\to\infty}\pi i(\tan^{-1}(b)-\tan^{-1}(0))=\frac{\pi^2}{2}i . ( ) (\ast\ast\ast) .

Finally, combining ( ) , ( ) (\ast),(\ast\ast) and ( ) (\ast\ast\ast) yields

π 2 2 i = π 2 2 i + 2 0 ln ( z ) 1 + z 2 d z \displaystyle\frac{\pi^2}{2}i=\frac{\pi^2}{2}i+2\int_0^{\infty}\frac{\ln(z)}{1+z^2}dz ,

so

0 ln ( z ) 1 + z 2 d z = 0 \displaystyle\int_0^{\infty}\frac{\ln(z)}{1+z^2}dz=\boxed{0} .

Not necessary to use Contour integration.

Abhishek Sinha - 5 years, 10 months ago

Log in to reply

There are many ways to solve a problem. Counter integration is quite a natural process for this, due to the denominator.

Calvin Lin Staff - 5 years, 9 months ago

Log in to reply

Yes. And there are some definite integrals which are impossible to evaluate without contour integration. I meant to say that, it is not one of those.

Abhishek Sinha - 5 years, 9 months ago

Log in to reply

@Abhishek Sinha Ah ic :)

I made the comment because contour integration was my first approach lol.

Calvin Lin Staff - 5 years, 9 months ago
Hassan Abdulla
May 8, 2018

l e t I = 0 ln ( x ) 1 + x 2 d x p u t u = 1 x I = 0 ln ( 1 x ) 1 + ( 1 x ) 2 d x x 2 = 0 ln ( x ) 1 + x 2 d x I = I I = 0 let\quad I=\int _{ 0 }^{ \infty } \frac { \ln { ( } x) }{ 1+x^{ 2 } } \, dx\\ put\quad u=\frac { 1 }{ x } \\ \Rightarrow I=\int _{ \infty }^{ 0 } \frac { \ln { ( } \frac { 1 }{ x } ) }{ 1+\left( \frac { 1 }{ x } \right) ^{ 2 } } \, \frac { -dx }{ x^{ 2 } } =-\int _{ 0 }^{ \infty } \frac { \ln { ( } x) }{ 1+x^{ 2 } } \, dx\\ I=-I\Rightarrow I=0

Ravi Dwivedi
Aug 22, 2015

Put x = tan θ d x = sec 2 θ d θ x= \tan \theta \implies {d}x= \sec^2 \theta {d}\theta

I = 0 ln ( x ) 1 + x 2 d x = 0 π 2 ln ( tan θ ) d θ = 0 π 2 ln ( tan ( π 2 θ ) ) d θ = 0 π 2 ln ( cot θ ) d θ I= \int_0^{\infty} \frac{\ln(x)}{1+x^{2}} \, dx = \int_0^{\frac{\pi}{2}} \ln(\tan \theta) \, d\theta = \int_0^{\frac{\pi}{2}} \ln(\tan(\frac{\pi}{2} -\theta)) \, d\theta = \int_0^{\frac{\pi}{2}} \ln(\cot \theta) \, d\theta )

Adding yields 2 I = 0 π 2 ln ( tan θ ) + ln ( cot θ ) d θ 2I= \int_0^{\frac{\pi}{2}} \ln(\tan \theta)+ \ln (\cot\theta) \, d\theta

2 I = 0 π 2 ln ( tan θ cot θ ) d θ = 0 π 2 ln ( 1 ) d θ = 0 2I= \int_0^{\frac{\pi}{2}} \ln(\tan \theta \cdot \cot\theta) \, d\theta = \int_0^{\frac{\pi}{2}} \ln(1) \, d\theta=0

Moderator note:

Interesting approach with the tan θ \tan \theta switch.

Note that you are essentially doing a t = 1 x t = \frac{1}{x} variable change.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...