The 4 9 th 49^\text{th} Coefficient

Algebra Level 5

Find the coefficient of x 49 x^{49} in the following product.

n = 1 52 ( x + n ) . \prod_{n=1}^{52} (x+n).


Inspiration .


The answer is 403512850.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Manuel Kahayon
Jan 27, 2016

Obviously, the product above is equal to ( n ) ( n + 1 ) ( n + 2 ) ( n + 52 ) (n)(n+1)(n+2) \cdots (n+52)

Let P ( x ) = ( n ) ( n + 1 ) ( n + 2 ) ( n + 52 ) P(x) = (n)(n+1)(n+2) \cdots (n+52) Then, obviously, P ( x ) P(x) has roots 1 , 2 , 3 , 52 -1, -2, -3, \cdots -52

First, let us find the sums of all the roots, the sums of the squares of the roots and the sums of the cubes of the roots.

Obviously, the sum of the roots of the equation is equal to 1 2 3 52 -1-2-3 \cdots -52 or ( 1 + 2 + 3 + 52 ) -(1+2+3+ \cdots 52)

This is equal to ( 52 ) ( 53 ) 2 = 1378 -\frac {(52)(53)}{2} = -1378

Similarly, we get the sum of the squares of the roots ( 1 ) 2 + ( 2 ) 2 + ( 3 ) 2 + + ( 52 ) 2 = 1 2 + 2 2 + 3 2 + + 5 2 2 = ( 52 ) ( 53 ) ( 105 ) 6 = 48230 (-1)^2+(-2)^2+(-3)^2 + \cdots + (-52)^2= 1^2+2^2+3^2+\cdots +52^2 = \frac{(52)(53)(105)}{6} = 48230

Also, the sum of the cubes of the roots are ( 1 ) 3 + ( 2 ) 3 + ( 3 ) 3 + + ( 52 ) 3 = ( 1 3 + 2 3 + 3 3 + + 5 2 2 ) = ( ( 52 ) ( 53 ) 2 ) 2 = 1898884 (-1)^3+(-2)^3+(-3)^3+\cdots +(-52)^3 = -(1^3+2^3+3^3+\cdots+52^2)=-(\frac{(52)(53)}{2})^2 = -1898884

Now, finally, we can proceed with the Newton's sums part.

Since P ( x ) = x 52 + a 51 x 51 + a 50 x 50 + a 49 x 49 + + a 0 P(x)= x^{52} + a_{51}x^{51}+a_{50}x^{50}+a_{49}x^{49}+\cdots + a_0 , then by Newton's sums,

S 1 + a 51 = 0 S_1+a_{51} = 0

S 2 + S 1 a 51 + 2 a 50 = 0 S_2+S_1a_{51}+2a_{50}= 0

S 3 + S 2 a 51 + S 1 a 50 + 3 a 49 = 0 S_3+S_2a_{51}+S_1a_{50} + 3a_{49}= 0

Where S n = i = 1 52 x i n S_n = \displaystyle \sum_{i=1}^{52} x_i^n

Solving for the variables a 51 , a 50 , a 49 a_{51}, a_{50}, a_{49} ,

S 1 + a 51 = 0 S_1+a_{51} = 0

a 51 = 1378 a_{51} = 1378

S 2 + S 1 a 51 + 2 a 50 = 0 S_2+S_1a_{51}+2a_{50}= 0

a 50 = 925327 a_{50} = 925327

S 3 + S 2 a 51 + S 1 a 50 + 3 a 49 = 0 S_3+S_2a_{51}+S_1a_{50} + 3a_{49}= 0

a 49 = 403512850 a_{49} = 403512850

Where the equations above were solved by simple substitution and use of calculator.

So, we get a 49 = 403512850 a_{49} = \boxed{403512850}

Thanks for the solution.

Chew-Seong Cheong - 5 years, 4 months ago

I did same

Dev Sharma - 5 years, 4 months ago

Through a combinatorial approach , we find (AUBUC). For any 52 n 52 \ - \ n we can use (AUBUCU...N). I misclicked on "View Solution". :c 400 points lost. ;-;

Kunal Verma - 5 years, 4 months ago

but newton sum says :: S 1 = a 51 S_1=a_{51} so why you have written S 1 + a 51 = 0 S_1+a_{51}=0 . It must be S 1 a 51 = 0 S_1-a_{51}=0

Mycobacterium Tuberculae - 5 years, 4 months ago

Log in to reply

According to Newton's sums method, S 1 = a 51 S_1 = -a_{51} .

Chew-Seong Cheong - 5 years, 4 months ago
Josh Banister
Jan 26, 2016

I found a solution I started using a while back which solves all problems of this type really easily.

Consider n = 1 52 ( 1 + y n ) \prod_{n=1}^{52} (1+yn) . It should be clear that the coefficient of y k y^k is equal to the coefficient of x 52 k x^{52-k} . An expansion of each of the expressions shows this. Hence, we should look for the coefficient of y 3 y^3 in the said expression. This proof uses the MacLaurin expansions of ln ( 1 + x ) \ln(1+x) and of e x e^x .

Now. Consider the following: n = 1 52 ( 1 + y n ) = exp ( ln n = 1 52 ( 1 + y n ) ) = exp ( ln ( 1 + y ) + ln ( 1 + 2 y ) + + ln ( 1 + 52 y ) ) = exp ( ( y y 2 2 + y 3 3 ) + ( 2 y 4 y 2 2 + 8 y 3 3 ) + + ( 52 y 5 2 2 y 2 2 + 5 2 3 y 3 3 ) ) = exp ( n = 1 52 n y 1 2 n = 1 52 n 2 y 2 + 1 3 n = 1 52 n 3 y 3 ) \begin{aligned} \prod_{n=1}^{52} (1+yn) &= \exp\left({\ln {\prod_{n=1}^{52} (1+yn)}}\right) \\ &= \exp\left({\ln (1+y) + \ln(1+2y) + \dots + \ln(1+52y)}\right) \\ &= \exp\left({\left(y - \frac{y^2}{2} + \frac{y^3}{3} - \dots\right) + \left(2y - \frac{4y^2}{2} + \frac{8y^3}{3} - \dots\right) + \dots + \left(52y - \frac{52^2y^2}{2} + \frac{52^3y^3}{3} - \dots\right)}\right) \\ &= \exp\left({\sum_{n=1}^{52} ny - \frac{1}{2}\sum_{n=1}^{52} n^2y^2 + \frac{1}{3}\sum_{n=1}^{52} n^3 y^3 - \dots }\right) \end{aligned}

Define S k = 1 k n = 1 52 n k S_k = \frac{1}{k}\sum_{n=1}^{52}n^k .

n = 1 52 ( 1 + y n ) = exp ( S 1 y S 2 y 2 + S 3 y 3 ) = e S 1 y × e S 2 y 2 × e S 3 y 3 × = ( 1 + ( S 1 y ) + ( S 1 y ) 2 2 + ( S 1 y ) 3 6 + ) × ( 1 + ( S 2 y 2 ) + ( S 2 y 2 ) 2 2 + ( S 2 y 2 ) 3 6 + ) × ( 1 + ( S 3 y 3 ) + ( S 3 y 3 ) 2 2 + ( S 3 y 3 ) 3 6 + ) × = 1 + ( S 1 ) y + ( S 1 2 2 S 2 ) y 2 + ( S 1 3 3 S 1 S 2 + S 3 ) y 3 + \begin{aligned} \prod_{n=1}^{52} (1+yn) &= \exp\left(S_1y - S_2y^2 + S_3y^3 - \dots\right) \\ &= e^{S_1 y} \times e^{-S_2 y^2} \times e^{S_3 y^3} \times \dots \\ &= (1 + (S_1 y) + \frac{(S_1 y)^2}{2} + \frac{(S_1 y)^3}{6} + \dots) \times (1 + (-S_2 y^2) + \frac{(-S_2 y^2)^2}{2} + \frac{(-S_2 y^2)^3}{6} + \dots) \times (1 + (S_3 y^3) + \frac{(S_3 y^3)^2}{2} + \frac{(S_3 y^3)^3}{6} + \dots) \times \dots \\ &= 1 + (S_1) y + \left(\frac{S_1^2}{2} - S_2 \right) y^2 + \left( \frac{S_1^3}{3} - S_1S_2 + S_3 \right)y^3 + \dots \end{aligned}

And hence by comparison, the coefficient of the expression we're looking for is S 1 3 3 S 1 S 2 + S 3 \frac{S_1^3}{3} - S_1S_2 + S_3 . By using the sum of powers, we get S 1 = 1378 , S 2 = 24115 , S 3 = 1898884 3 S_1 = 1378, S_2 = 24115, S_3 = \frac{1898884}{3} and thus by direct calculation, we get our coefficient of x 49 x^{49} to be 403512850 \boxed{403512850} .

Interesting. Thanks for the solution.

Chew-Seong Cheong - 5 years, 4 months ago
Arjen Vreugdenhil
Jan 30, 2016

The terms with x 49 x^{49} are of the form a b c x 49 a\cdot b\cdot c\cdot x^{49} , where 1 a < b < c 52 1 \leq a < b < c \leq 52 .

My strategy for adding all these products a b c a\cdot b\cdot c together is as follows:

  • First, allow a , b , c a, b, c to range over all values from 1 to 52.

  • Then subtract all triples of the form ( a , a , b ) (a, a, b) , ( a , b , a ) (a, b, a) , and ( b , a , a ) (b, a, a) .

  • In the previous step, when a = b a = b we have subtracted the same triple three times instead of once. Therefore add back in twice all triples of the form ( a , a , a ) (a, a, a) .

  • Now we have all triples with a b c a a \not= b\not= c\not= a , but each triple in all of its six permutations. Therefore divide the result by 6.

Step 1 : Sum of all products a b c a\cdot b\cdot c . This is a = 1 52 b = 1 52 c = 1 52 a b c = ( a = 1 52 a ) ( b = 1 52 b ) ( c = 1 52 c ) = ( a = 1 52 a ) 3 ; \sum_{a = 1}^{52} \sum_{b = 1}^{52} \sum_{c = 1}^{52} abc = \left(\sum_{a=1}^{52} a\right) \cdot \left(\sum_{b=1}^{52} b\right) \cdot \left(\sum_{c=1}^{52} c\right) = \left(\sum_{a=1}^{52} a\right)^3; this is equal to ( 52 53 2 ) 3 = 2 616 662 152. \left(\frac{52\cdot 53}2\right)^3 = 2\:616\:662\:152.

Step 2 : Sum of all products a a b a\cdot a\cdot b . This is a = 1 52 b = 1 52 a 2 b = ( a = 1 52 a 2 ) ( b = 1 52 b ) = ( 52 53 105 6 ) ( 52 53 2 ) = 66 460 940. \sum_{a = 1}^{52} \sum_{b = 1}^{52} a^2b = \left(\sum_{a=1}^{52} a^2\right) \cdot \left(\sum_{b=1}^{52} b\right) \\ = \left(\frac{52\cdot 53\cdot 105}6\right) \cdot \left(\frac{52\cdot 53}2\right) = 66\:460\:940.

Step 3 : Sum of all products a a a a\cdot a\cdot a . This is a = 1 52 a 3 = ( a = 1 52 a ) 2 = ( 52 53 2 ) 2 = 1 898 884. \sum_{a = 1}^{52} a^3 = \left(\sum_{a = 1}^{52} a\right)^2 = \left(\frac{52\cdot 53}2\right)^2 = 1\:898\:884.

Step 4 : Sum of all products a b c a\cdot b\cdot c with all different numbers: 2 616 662 152 3 × 66 460 940 + 2 × 1 898 884 = 2 421 077 100 ; 2\:616\:662\:152 - 3\times 66\:460\:940 + 2\times 1\:898\:884 = 2\:421\:077\:100; divide by six to have sum of all products a b c a\cdot b\cdot c with a < b < c a < b < c : 2 421 077 100 6 = 403 512 850 . \frac{2\:421\:077\:100}6 = \boxed{403\:512\:850}.

Note: This can be generalized, of course. Replacing 52 by n n , define S 1 = a = 1 n a = n ( n + 1 ) 2 ; S 2 = a = 1 n a 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = 2 n + 1 3 S 1 ; S 3 = a = 1 n a 3 = S 1 2 ; S_1 = \sum_{a=1}^n a = \frac{n(n+1)}2;\\ S_2 = \sum_{a=1}^n a^2 = \frac{n(n+1)(2n+1)}6 = \frac{2n+1}3 S_1; \\ S_3 = \sum_{a=1}^n a^3 = S_1^2; the values for steps 1, 2, and 3 become N 1 = S 1 3 ; N 2 = S 2 S 1 = 2 n + 1 3 S 1 3 ; N 3 = S 1 2 N_1 = S_1^3;\ \ N_2 = S_2 S_1 = \frac{2n+1}3 S_1^3;\ \ N_3 = S_1^2 so that the answer is N = N 1 3 N 2 + 2 N 3 6 = 1 6 S 1 2 ( S 1 ( 2 n + 1 ) + 2 ) = 1 6 S 1 2 ( S 1 2 n + 1 ) . N = \frac{N_1 - 3N_2 + 2N_3}6 = \tfrac16 S_1^2\cdot (S_1 - (2n+1) + 2) = \tfrac16 S_1^2 (S_1 - 2n + 1). In our case, S 1 = 1378 ; N = 1 6 137 8 2 1275 = 403 512 850. S_1 = 1378;\ \ N = \tfrac16\cdot 1378^2\cdot 1275 = 403\:512\:850.

Mark Hennings
Jan 25, 2016

Start with F 2 ( N ) = 1 r < s N + 1 r s = s = 2 N + 1 s ( r = 1 s 1 r ) = 1 2 s = 2 N + 1 s ( s 1 ) s = 1 2 s = 1 N s ( s + 1 ) 2 = 1 24 N ( N + 1 ) ( N + 2 ) ( 3 N + 5 ) \begin{array}{rcl} \displaystyle F_2(N) \; = \; \sum_{1 \le r < s \le N+1} rs & = & \displaystyle \sum_{s=2}^{N+1} s \left(\sum_{r=1}^{s-1}r\right) \; = \; \frac12\sum_{s=2}^{N+1} s(s-1)s \\ & = & \displaystyle \frac12\sum_{s=1}^N s(s+1)^2 \; = \; \frac1{24}N(N+1)(N+2)(3N+5) \end{array} then F 3 ( N ) = 1 r < s < t N + 2 r s t = 1 r < s N + 1 r s ( t = s + 1 N + 2 t ) + 1 2 ( N + 2 ) ( N + 3 ) F 2 ( N ) 1 2 1 r < s N + 1 r s 2 ( s + 1 ) \begin{array}{rcl} \displaystyle F_3(N) \; = \; \sum_{1 \le r < s < t \le N+2}rst &= & \displaystyle \sum_{1 \le r < s \le N+1}rs\left(\sum_{t=s+1}^{N+2}t\right) \\ & + & \displaystyle \frac12(N+2)(N+3)F_2(N) - \frac12\sum_{1 \le r<s \le N+1} rs^2(s+1) \end{array} and 1 r < s N + 1 r s 2 ( s + 1 ) = s = 2 N + 1 s 2 ( s + 1 ) ( r = 1 s 1 r ) = 1 2 s = 2 N + 1 ( s 1 ) s 3 ( s + 1 ) = 1 2 s = 1 N s ( s + 1 ) 3 ( s + 2 ) = 1 2 s = 1 N [ s ( s + 1 ) ( s + 2 ) ( s + 3 ) ( s + 4 ) 5 s ( s + 1 ) ( s + 2 ) ( s + 3 ) + 4 s ( s + 1 ) ( s + 2 ) ] = 1 2 [ 1 6 N ( N + 1 ) ( N + 2 ) ( N + 3 ) ( N + 4 ) ( N + 5 ) N ( N + 1 ) ( N + 2 ) ( N + 3 ) ( N + 4 ) + N ( N + 1 ) ( N + 2 ) ( N + 3 ) ] \begin{array}{rcl} \displaystyle \sum_{1 \le r<s \le N+1} rs^2(s+1) & = & \displaystyle\sum_{s=2}^{N+1}s^2(s+1)\left(\sum_{r=1}^{s-1}r\right) \; = \; \frac12\sum_{s=2}^{N+1}(s-1)s^3(s+1) \\ & = & \displaystyle \frac12\sum_{s=1}^N s(s+1)^3(s+2) \\ & = & \displaystyle \frac12\sum_{s=1}^N\left[ \begin{array}{l} s(s+1)(s+2)(s+3)(s+4) - 5s(s+1)(s+2)(s+3) \\+ 4s(s+1)(s+2)\end{array}\right] \\ & = & \displaystyle\frac12\left[ \begin{array}{l} \frac16N(N+1)(N+2)(N+3)(N+4)(N+5) \\- N(N+1)(N+2)(N+3)(N+4) \\+ N(N+1)(N+2)(N+3)\end{array}\right] \end{array} Putting all these together, we obtain F 3 ( N ) = 1 48 N ( N + 1 ) ( N + 2 ) 2 ( N + 3 ) 2 F_3(N) \; = \; \frac{1}{48}N(N+1)(N+2)^2(N+3)^2 The answer to the question is F 3 ( 50 ) = 403512850 F_3(50) \,=\, \boxed{403512850} .

Thanks for the solution.

Chew-Seong Cheong - 5 years, 4 months ago

Log in to reply

Actually, it works more easily like this: F 3 ( N ) = 2 s < t N + 2 s t ( r = 1 s 1 r ) = 1 2 2 s < t N + 2 ( s 1 ) s 2 t = 1 2 1 s < t N + 1 s ( s + 1 ) 2 ( t + 1 ) = 1 2 t = 2 N + 1 ( t + 1 ) ( s = 1 t 1 s ( s + 1 ) 2 ) = 1 24 t = 2 N + 1 ( t 1 ) t ( t + 1 ) 2 ( 3 t + 2 ) = 1 24 t = 1 N t ( t + 1 ) ( t + 2 ) 2 ( 3 t + 5 ) = 1 48 N ( N + 1 ) ( N + 2 ) 2 ( N + 3 ) 2 \begin{array}{rcl} F_3(N) & = & \displaystyle\sum_{2\le s<t\le N+2}st\left(\sum_{r=1}^{s-1}r\right) \; = \; \frac12\sum_{2 \le s<t \le N+2} (s-1)s^2t \\ & = & \displaystyle\frac12\sum_{1 \le s < t \le N+1} s(s+1)^2 (t+1) \; = \; \frac12\sum_{t=2}^{N+1}(t+1)\left(\sum_{s=1}^{t-1}s(s+1)^2\right) \\ & = & \displaystyle\frac{1}{24}\sum_{t=2}^{N+1}(t-1)t(t+1)^2(3t+2) \; = \; \frac{1}{24}\sum_{t=1}^N t(t+1)(t+2)^2(3t+5) \\ & = & \displaystyle\frac{1}{48}N(N+1)(N+2)^2(N+3)^2 \end{array}

Mark Hennings - 5 years, 4 months ago

Log in to reply

Actually, wouldnt it work much more easier with newton's sums...?

Manuel Kahayon - 5 years, 4 months ago

Log in to reply

@Manuel Kahayon Yes, much easier... Since the roots of the polynomial j = 1 n ( x + j ) = j = 0 n a j x j \prod_{j=1}^n (x + j) \; = \; \sum_{j=0}^n a_j x^j are 1 , 2 , , n -1,-2,\ldots,-n , we have P 1 = j = 1 n ( j ) = 1 2 n ( n + 1 ) P 2 = j = 1 n ( j ) 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) P 3 = j = 1 n ( j ) 3 = 1 4 n 2 ( n + 1 ) 2 \begin{array}{rcl} P_1 & = & \displaystyle\sum_{j=1}^n (-j) \; = \; -\tfrac12n(n+1) \\ P_2 & = & \displaystyle\sum_{j=1}^n (-j)^2 \; = \; \tfrac16n(n+1)(2n+1) \\ P_3 & = & \displaystyle\sum_{j=1}^n (-j)^3 \; = \; -\tfrac14n^2(n+1)^2 \end{array} and so the coefficient we want is a n 3 = 1 3 [ P 3 + 3 2 P 1 P 2 1 2 P 1 3 ] = 1 12 n 2 ( n + 1 ) 2 1 24 n 2 ( n + 1 ) 2 ( 2 n + 1 ) + 1 48 n 3 ( n + 1 ) 3 = 1 48 n 2 ( n + 1 ) 2 [ 4 2 ( 2 n + 1 ) + n ( n + 1 ) ] = 1 48 ( n 2 ) ( n 1 ) n 2 ( n + 1 ) 2 . \begin{array}{rcl} a_{n-3} & = & \tfrac13\big[-P_3 + \tfrac32P_1P_2 - \tfrac12P_1^3\big] \\ & = & \tfrac{1}{12}n^2(n+1)^2 - \tfrac{1}{24}n^2(n+1)^2(2n+1) + \tfrac{1}{48}n^3(n+1)^3 \\ & = & \tfrac{1}{48}n^2(n+1)^2\big[4 - 2(2n+1) + n(n+1)\big] \\ & = & \tfrac{1}{48}(n-2)(n-1)n^2(n+1)^2 \;. \end{array} This time, put n = 52 n=52 .

Mark Hennings - 5 years, 4 months ago

Log in to reply

@Mark Hennings Thanks for the solution again.

Chew-Seong Cheong - 5 years, 4 months ago

@Manuel Kahayon Can you write a solution?

Chew-Seong Cheong - 5 years, 4 months ago

Log in to reply

@Chew-Seong Cheong I'll try...

Manuel Kahayon - 5 years, 4 months ago

Log in to reply

@Manuel Kahayon Mark Hennings has provide the solution.

Chew-Seong Cheong - 5 years, 4 months ago

@Chew-Seong Cheong Woop! I think I got now the solution using Newton's Sums . And it's very similar to Mark Hennings' solution. :)

Reineir Duran - 5 years, 4 months ago

@Chew-Seong Cheong And I must say, the following formulas helped me on getting the answer using the Newton's Sums .

1 2 + 2 2 + 3 2 + . . . + k 2 = k ( k + 1 ) ( 2 k + 1 ) 6 \displaystyle 1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k + 1)(2k + 1)}{6}

and

1 3 + 2 3 + 3 3 + . . . + k 3 = [ k ( k + 1 ) 2 ] 2 \displaystyle 1^3 + 2^3 + 3^3 + ... + k^3 = [\frac{k(k + 1)}{2}]^2

Reineir Duran - 5 years, 4 months ago

Does this work for all n?

Okay Fine - 5 years, 4 months ago
Carsten Meyer
Apr 16, 2021

The coefficients of a polynomial P ( x ) P(x) P ( x ) : = k = 0 n a k x k = k = 1 n ( x x k ) , a k , x k C , a n = 1 P(x) := \sum_{k=0}^n a_kx^k=\prod_{k=1}^n (x-x_k),\qquad a_k,\: x_k\in\mathbb{C},\quad a_n=1

satisfy a recurrence relation we can get if we rewrite the initial condition of Newton's Identities in matrix form: ( n S 1 S n 1 S 1 1 ) ( a 0 a n 1 a n ) = ( 0 0 1 ) , S i = k = 1 n x k i \begin{pmatrix} n & S_1 & \dots & S_n\\ & \ddots & \ddots & \vdots\\ & & 1 & S_1\\ & & & 1 \end{pmatrix} \cdot \begin{pmatrix} a_0\\\vdots\\a_{n-1}\\a_n \end{pmatrix}=\begin{pmatrix} 0\\\vdots\\0\\1 \end{pmatrix},\qquad S_i=\prod_{k=1}^nx_k^i


Now to the task. For simplicity, let n = 52 n=52 , so we need to find a n 3 a_{n-3} and only need the lower right 4 × 4 4\times 4 corner of the recurrence relation containing S 1 , S 2 , S 3 S_1,\:S_2,\:S_3 . Our polynomial has the roots x k = k x_k=-k and we get S 1 = k = 1 n ( k ) = n ( n + 1 ) 2 , S 2 = k = 1 n ( k ) 2 = n ( n + 1 ) ( 2 n + 1 ) 6 , S 3 = k = 1 n ( k ) 3 = n 2 ( n + 1 ) 2 4 \begin{aligned} S_1 &=\sum_{k=1}^n(-k)=-\frac{n(n+1)}{2}, & S_2 &=\sum_{k=1}^n (-k)^2 = \frac{n(n+1)(2n+1)}{6}, & S_3 &= \sum_{k=1}^n(-k)^3=-\frac{n^2(n+1)^2}{4} \end{aligned} We solve these four equations from bottom to top and obtain a n 1 = n ( n + 1 ) 2 , a n 2 = ( n 1 ) n ( n + 1 ) ( 3 n + 2 ) 24 , a n 3 = ( n 2 ) ( n 1 ) n 2 ( n + 1 ) 2 48 \begin{aligned} a_{n-1}&=\frac{n(n+1)}{2}, & a_{n-2}&=\frac{(n-1)n(n+1)(3n+2)}{24}, & a_{n-3} &= \frac{(n-2)(n-1)n^2(n+1)^2}{48} \end{aligned} The special case n = 52 n=52 leads to a 49 = 403512850 a_{49}=\boxed{403512850}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...