The Cardinal Sine Evaluation

Calculus Level 4

π / 6 π / 2 f ( x ) d x + 3 / π 2 / π g ( x ) d x \large \displaystyle \int_{\pi /6}^{\pi /2} f(x) \, dx + \int_{3/ \pi}^{2/ \pi } g(x) \, dx

In mathematics the cardinal sine function or sinc ( x ) \text{sinc}(x) is defined as f ( x ) = sin ( x ) x f(x) = \frac {\sin(x)}x . Let g ( x ) g(x) denote the inverse function of f ( x ) f(x) .

What is the value of the expression given above?


This is an original problem.
Also try The Cardinal Sine Evaluation - Part 2. .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

\quad In\quad \int _{ \frac { 3 }{ \pi } }^{ \frac { 2 }{ \pi } }{ g\left( x \right) .dx } \quad \\ Let\quad x\quad =\quad f(t)\quad then\quad dx\quad =\quad f^{ ' }\left( t \right) .dt\\ Since\quad g\left( x \right) \quad is\quad inverse\quad of\quad f\left( x \right) ,\\ g\left( f\left( t \right) \right) \quad =\quad t\quad and\quad Using\quad property\quad \\ of\quad change\quad of\quad variable\quad the\quad ,\\ integral\quad becomes\quad :\\ \quad \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 2 } }{ t.f^{ ' }\left( t \right) .dt } \quad =\quad \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 2 } }{ x.f^{ ' }\left( x \right) .dx } \\ Now\quad by\quad using\quad integration\quad by\quad parts\quad ,\\ \int _{ \frac { 3 }{ \pi } }^{ \frac { 2 }{ \pi } }{ g\left( x \right) .dx } \quad =\quad \left[ x.f(x) \right] _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 2 } }\quad -\quad \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 2 } }{ f\left( x \right) .dx } \\ \\ \quad \int _{ \frac { \pi }{ 6 } }^{ \frac { \pi }{ 2 } }{ f\left( x \right) .dx\quad +\quad \int _{ \frac { 3 }{ \pi } }^{ \frac { 2 }{ \pi } }{ g\left( x \right) .dx } } =\quad \sin { \frac { \pi }{ 2 } } -\sin { \frac { \pi }{ 6 } } \\ \\ Therefore\quad ,\quad Answer\quad =\quad 0.5\quad

The last line should read π / 6 π / 2 f ( x ) d x + 3 / π 2 / π g ( x ) d x = sin π 2 sin π 6 . \int_{\pi/6}^{\pi/2} f(x) \: dx + \int_{\color{#D61F06}{3/\pi}}^{\color{#D61F06}{2/\pi}} g(x) \: dx = \sin \frac{\pi}{2} - \sin \frac{\pi}{6}.

Jon Haussmann - 6 years ago

Log in to reply

Sorry for the inconvenience.

Anupam Khandelwal - 6 years ago

Log in to reply

Thanks for correcting; you'll want to edit the problem as well.

Jon Haussmann - 6 years ago

i mean the problm is with your limits .. 3/pi to 2/pi give 0.5 as answer . but in ur question , limit is from 2/pi to 3/pi .. which will give 0.3036 as ans

Ciara Sean - 6 years ago

Log in to reply

@Ciara Sean Sorry for the inconvenience.

Anupam Khandelwal - 6 years ago

The answer is 0.3036 your question is incorrect ! >:(

Ciara Sean - 6 years ago

Log in to reply

Give me proof and I will reconsider it.

Anupam Khandelwal - 6 years ago

The relation between f(x) and integral of its inverse g(x) is given by, a b f ( x ) d x + c d g ( x ) d x = b d a c . I n t h i s a = π 6 , b = π 2 , c = 3 π , d = 2 π I n t . = π 2 2 π π 6 3 π = 0.5. This relation is true for any function and its inverse not only for cardinal sine function . \text{The relation between f(x) and integral of its inverse g(x) is given by, } \\\large \displaystyle \int_{a}^{b} f(x) \, dx ~~+~~ \int_{c}^{d} g(x) \, dx =~~~~bd -ac.\\In~this~~~~~a=\dfrac \pi 6,~~~~~~b=\dfrac \pi 2,~~~~~~c=\dfrac 3 \pi ,~~~~d=\dfrac 2 \pi \\\therefore Int.= ~~ \dfrac \pi 2 * \dfrac 2 \pi ~~ -~~ \dfrac \pi 6 * \dfrac 3 \pi =~~~0.5. \\\text{This relation is true for any function and its inverse}\\ \text { not only for cardinal sine function .}

Can you give me proof of the above expression.

Anupam Khandelwal - 5 years, 9 months ago

Log in to reply

See equation (3): Integration Tricks .

Pi Han Goh - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...