The Other Way Around

Algebra Level 4

a + b + c = 1 a 2 + b 2 + c 2 = 2 a 3 + b 3 + c 3 = 3 \begin{aligned} a+b+c &=&1\\ a^2+b^2+c^2 &=& 2\\ a^3+b^3+c^3 &=& 3\\ \end{aligned}

Numbers a , b , c a,b,c satisfy the equations above.

What is the value of a 1 + b 1 + c 1 { a }^{ -1 }+{ b }^{ -1 }+{ c }^{ -1 } ?


The answer is -3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

John Errol Obia
Jan 6, 2015

a 1 + b 1 + c 1 a^{-1}+b^{-1}+c^{-1} can be written as a b + a c + b c a b c \frac { ab+ac+bc }{ abc }

And we have a b + a c + b c = 1 2 [ ( a + b + c ) 2 ( a 2 + b 2 + c 2 ) ] ab+ac+bc=\frac { 1 }{ 2 } \left[ { \left( a+b+c \right) }^{ 2 }-({ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }) \right]

\Rightarrow a b + a c + b c = 1 2 ( 1 2 ) ab+ac+bc=\frac { 1 }{ 2 } (1-2) \Rightarrow a b + b c + a c = 1 2 ab+bc+ac=\frac{-1}{2}

From the identity

a 3 + b 3 + c 3 3 a b c = ( a + b + c ) [ ( a 2 + b 2 + c 2 ) ( a b + a c + b c ) ] { a }^{ 3 }+{ { b }^{ 3 }+c }^{ 3 }-3abc=(a+b+c)\left[ { (a^{2}+b^{2}+c^{2}) }-(ab+ac+bc) \right]

\Rightarrow 3 3 a b c = 1 ( 2 + 1 2 ) 3-3abc=1(2+\frac{1}{2}) \Rightarrow a b c = 1 6 abc=\frac{1}{6}

Therefore: a 1 + b 1 + c 1 a^{-1}+b^{-1}+c^{-1} = = a b + a c + b c a b c \frac { ab+ac+bc }{ abc } = 1 2 1 6 =\frac{\frac{-1}{2}}{\frac{1}{6}}

\Rightarrow a 1 + b 1 + c 1 = 3 a^{-1}+b^{-1}+c^{-1}=-3

An alternate (slower) way to derive the answer is by finding the values of a + b + c , a 2 + b 2 + c 2 , a 3 + b 3 + c 3 a+b+c,a^2+b^2+c^2,a^3+b^3+c^3 in terms of a + b + c , a b + b c + c a , a b c a+b+c, ab+bc+ca, abc by Newton Sums Method, then solving for those three expressions, which is what I did.

This basically just reproves the identities you used though. (I can never remember those Algebraic identities!)

Daniel Liu - 6 years, 5 months ago

Log in to reply

what is newton sums method @daniel liu

Rishi Sharma - 6 years, 5 months ago

Log in to reply

See here

Daniel Liu - 6 years, 5 months ago

Log in to reply

@Daniel Liu It's still incomplete though. I can't seem to get enough time to complete it. The school projects are a pain in the arse. :P

Prasun Biswas - 6 years, 5 months ago

@Daniel Liu I corrected a typo in there, I think that's why you're wondering where those identities come from. It was just basically derived from Newton-Girard formulas.

John Errol Obia - 6 years, 5 months ago

@John Obia: No actually formula for 3abc = (a+b+c)[(...) ] hasa typo maybe.

Ajit Deshpande - 6 years, 5 months ago

Log in to reply

It must have been overlooked. ( a + b + c ) 3 = a 3 + b 3 + c 3 + 6 a b c + 3 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) (a+b+c)^3=a^3+b^3+c^3+6abc+3(a^2b+a^2c+ab^2+b^2c+ac^2+bc^2) So a 3 + b 3 + c 3 3 a b c = ( a + b + c ) 3 9 ( a b c ) 3 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) a^3+b^3+c^3-3abc=(a+b+c)^3-9(abc)-3(a^2b+a^2c+ab^2+b^2c+ac^2+bc^2) a 3 + b 3 + c 3 3 a b c = ( a + b + c ) 3 9 ( a b c ) 3 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 + 3 a b c ) + 9 a b c a^3+b^3+c^3-3abc=(a+b+c)^3-9(abc)-3(a^2b+a^2c+ab^2+b^2c+ac^2+bc^2+3abc)+9abc a 3 + b 3 + c 3 3 a b c = ( a + b + c ) 3 3 ( a + b + c ) ( a b + a c + b c ) a^3+b^3+c^3-3abc=(a+b+c)^3-3(a+b+c)(ab+ac+bc)
a 3 + b 3 + c 3 3 a b c = [ a + b + c ] [ ( a + b + c ) 2 3 ( a b + a c + b c ) ] a^3+b^3+c^3-3abc=[a+b+c][(a+b+c)^2-3(ab+ac+bc)] a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 ( a b + a c + b c ) ) a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-(ab+ac+bc))

Also, there was a wrong substitution in the wrong formula that made the answer right. ( a + b + c ) 2 2 (a+b+c)^2 \neq 2 but 1.

Roman Frago - 6 years, 5 months ago

Log in to reply

@Roman Frago and @Ajit Deshpande Thank you very much for your concern, I just overlooked the mistake though. I have edited them already. I think that's why some people are wondering where did I get these identities.

John Errol Obia - 6 years, 5 months ago

I take it you cannot assign "a" "b" and "c" values that satisfies the equations as the formulas will not equate on power 2 and 3 to answers 2 + 3, closest I am getting without messing around is -.1945, -.1945 + 1.389 resulting in 2.004982 + 2.665111, any adjustment to the ratios only narrows the ration making achieving a result of 2 + 3 impossible?????

Allan Marriott - 5 years, 6 months ago

The value required is just e 2 e 3 \dfrac{e_2}{e_3} , where e k e_k is the k th k^{\textrm{th}} elementary symmetric polynomial which can be found out by recursively using Newton's Identities as stated by Daniel.

Prasun Biswas - 6 years, 5 months ago

Log in to reply

Can you tell us more what e1, e 2 means ?

Syed Baqir - 5 years, 9 months ago

Log in to reply

If the roots of a degree n n polynomial are r i 1 , r i 2 , , r i n r_{i_1},r_{i_2},\ldots,r_{i_n} , then we define e k e_k as,

e k = 1 i 1 < i 2 < < i k n ( t = 1 k r i t ) 1 k n \large e_k=\sum\limits_{1\leq i_1 < i_2 < \cdots < i_k \leq n}\left(\prod_{t=1}^k r_{i_t}\right)~\forall~1\leq k\leq n


As an explicit example, for a quartic polynomial with roots a , b , c , d a,b,c,d , we have,

e 1 = a + b + c + d e 2 = a b + a c + a d + b c + b d + c d e 3 = a b c + a b d + a c d + b c d e 4 = a b c d e_1=a+b+c+d\\ e_2=ab+ac+ad+bc+bd+cd\\ e_3=abc+abd+acd+bcd\\ e_4=abcd

Prasun Biswas - 5 years, 9 months ago

Log in to reply

@Prasun Biswas Very well explained............ Brilliant

Syed Baqir - 5 years, 9 months ago
Fidel R.
Jan 24, 2015

The first thing that I did was rewrite the problem. a 1 + b 1 + c 1 = 1 a + 1 b + 1 c = b c a b c + a c a b c + a b a b c = b c + a c + a b a b c a^{-1} + b^{-1} + c^{-1} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc}{abc} + \frac{ac}{abc} + \frac{ab}{abc} = \frac{bc+ac+ab}{abc} Next, I manipulated the original equation to find a value equivalent to bc+ac+ab and another one equivalent to abc. a + b + c = 1 a+b+c = 1 ( a + b + c ) 2 = 1 2 (a+b+c)^{2} = 1^{2} ( a + b + c ) ( a + b + c ) = 1 (a+b+c)(a+b+c) = 1 a ( a + b + c ) + b ( a + b + c ) + c ( a + b + c ) = 1 a(a+b+c) + b(a+b+c) + c(a+b+c) = 1 a 2 + a b + a c + a b + b 2 + b c + a c + b c + c 2 = 1 a^{2} + ab + ac + ab + b^{2} + bc + ac + bc + c^{2} = 1 a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 a c = 1 a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac = 1 ( a 2 + b 2 + c 2 ) + 2 a b + 2 b c + 2 a c = 1 (a^{2} + b^{2} + c^{2}) + 2ab + 2bc + 2ac = 1 The expression in parenthesis is the second equation we were given; therefore, 2 + 2 a b + 2 b c + 2 a c = 1 2 + 2ab + 2bc + 2ac = 1 2 a b + 2 b c + 2 a c = 1 2ab + 2bc + 2ac = -1 a b + b c + a c = 1 2 ab + bc + ac = -\frac{1}{2} There, we have the expression for the numerator. The denominator is a little more involved. a + b + c = 1 a+b+c = 1 ( a + b + c ) 3 = 1 3 (a+b+c)^{3} = 1^{3} ( a + b + c ) ( a + b + c ) 2 = 1 (a+b+c)(a+b+c)^{2} = 1 From the previous part we know that, ( a + b + c ) 2 = 2 + 2 a b + 2 b c + 2 a c (a+b+c)^{2} = 2 + 2ab + 2bc + 2ac Therefore, ( a + b + c ) ( 2 + 2 a b + 2 b c + 2 a c ) = 1 (a+b+c)(2+2ab+2bc+2ac) = 1 a ( 2 + 2 a b + 2 b c + 2 a c ) + b ( 2 + 2 a b + 2 b c + 2 a c ) + c ( 2 + 2 a b + 2 b c + 2 a c ) = 1 a(2+2ab+2bc+2ac) + b(2+2ab+2bc+2ac) + c(2+2ab+2bc+2ac) = 1 2 a + 2 a 2 b + 2 a b c + 2 a 2 c + 2 b + 2 a b 2 + 2 b 2 c + 2 a b c + 2 c + 2 a b c + 2 b c 2 + 2 a c 2 = 1 2a+2a^{2}b+2abc+2a^{2}c+2b+2ab^{2}+2b^{2}c+2abc+2c+2abc+2bc^{2}+2ac^{2} = 1 Combine like terms and strategically place parentheses: 6 a b c + ( 2 a + 2 b + 2 c ) + ( 2 a 2 c + 2 a 2 b ) + ( 2 a b 2 + 2 b 2 c ) + ( 2 b c 2 + 2 a c 2 ) = 1 6abc + (2a+2b+2c) + (2a^{2}c+2a^{2}b) + (2ab^{2}+2b^{2}c) + (2bc^{2}+2ac^{2}) = 1 6 a b c + 2 ( a + b + c ) + 2 a 2 ( b + c ) + 2 b 2 ( a + c ) + 2 c 2 ( a + b ) = 1 6abc + 2(a+b+c) + 2a^{2}(b+c) + 2b^{2}(a+c) + 2c^{2}(a+b) = 1 6 a b c + 2 ( a + b + c ) + 2 a 2 ( a + b + c a ) + 2 b 2 ( a + b + c b ) + 2 c 2 ( a + b + c c ) = 1 6abc + 2(a+b+c) + 2a^{2}(a+b+c-a) + 2b^{2}(a+b+c-b) + 2c^{2}(a+b+c-c) = 1 Substitute 1 for every a+b+c that appears (first equation given). 6 a b c + 2 ( 1 ) + 2 a 2 ( 1 a ) + 2 b 2 ( 1 b ) + 2 c 2 ( 1 c ) = 1 6abc + 2(1) + 2a^{2}(1-a) + 2b^{2}(1-b) + 2c^{2}(1-c) = 1 6 a b c + 2 + 2 a 2 2 a 3 + 2 b 2 2 b 3 + 2 c 2 2 c 3 = 1 6abc + 2 + 2a^{2} - 2a^{3} + 2b^{2} - 2b^{3} + 2c^{2} - 2c^{3} = 1 6 a b c + 2 + 2 a 2 + 2 b 2 + 2 c 2 2 a 3 2 b 3 2 c 3 = 1 6abc + 2 + 2a^{2} + 2b^{2} + 2c^{2} - 2a^{3} - 2b^{3} - 2c^{3} = 1 6 a b c + 2 + 2 ( a 2 + b 2 + c c ) 2 ( a 3 + b 3 + c 3 ) = 1 6abc + 2 + 2(a^{2} + b^{2} + c^{c}) - 2(a^{3} + b^{3} + c^{3}) = 1 Take a look at the second and third given equations and substitute. 6 a b c + 2 + 2 ( 2 ) 2 ( 3 ) = 1 6abc + 2 + 2(2) - 2(3) = 1 6 a b c + 2 + 4 6 = 1 6abc + 2 + 4 - 6 = 1 6 a b c = 1 6abc = 1 a b c = 1 6 abc = \frac{1}{6} There, we have an expression for the denominator. Now we plug them back in. b c + a c + a b a b c = 1 2 1 6 = 3 \frac{bc+ac+ab}{abc} = \frac{-\frac{1}{2}}{\frac{1}{6}} = \boxed{-3}

Nice approach for the solution for those who don't know the identities...like me

Joseph Vincent - 5 years, 6 months ago

nice solution

Syed Baqir - 5 years, 9 months ago

I solved the problem this way

Evan Huynh - 5 years, 2 months ago

While a bit long, this solution was really easy to understand. Great job!

Alex Li - 4 years, 6 months ago
Roman Frago
Jan 11, 2015

Squaring the first equation: a 2 + b 2 + c 2 + 2 ( a b + a c + b c ) a^2+b^2+c^2+2(ab+ac+bc)

but a 2 + b 2 + c 2 = 2 a^2+b^2+c^2=2 .

So a b + b c + a c = 1 2 ab +bc + ac =- \frac {1} {2} [ 4 t h 4^{th} equation]

Multiplying the first and second equation: a 3 + b 3 + c 3 + a b 2 + a c 2 + a 2 b + b c 2 + a 2 c + b 2 c = 2 a^3+b^3+c^3+ab^2+ac^2+a^2b+bc^2+a^2c+b^2c=2

but a 3 + b 3 + c 3 = 3 a^3+b^3+c^3=3

so a b 2 + a c 2 + a 2 b + b c 2 + a 2 c + b 2 c = 1 ab^2+ac^2+a^2b+bc^2+a^2c+b^2c=-1 [ 5 t h 5^{ th} equation]

Multiplying the first and fourth equation: a b 2 + a c 2 + a 2 b + b c 2 + a 2 c + b 2 c + 3 a b c = 1 2 ab^2+ac^2+a^2b+bc^2+a^2c+b^2c+3abc=-\frac {1} {2}

but a b 2 + a c 2 + a 2 b + b c 2 + a 2 c + b 2 c = 1 ab^2+ac^2+a^2b+bc^2+a^2c+b^2c=-1

so a b c = 1 6 abc=\frac {1} {6}

a 1 + b 1 + c 1 = 1 a + 1 b + 1 c = b c + a c + a b a b c = 1 2 1 6 = 3 \boxed {a^{-1}+ b^{-1}+c{-1}=}\frac {1} {a} +\frac {1} { b}+\frac {1} {c}=\frac {bc+ ac+ab} {abc}=\frac {-\frac {1} {2}} {\frac {1} {6}}=\boxed {-3}

Oh, what a creative solution out there :)

John Errol Obia - 6 years, 5 months ago

Oh! Nearly the same way I solved it! Great job!

Jesús Manrique - 5 years, 9 months ago

Great solution!!, 😊😊😊😎😎

Arun Krishna AMS - The Joker - 4 years, 6 months ago
Tushar Malik
Feb 11, 2015

We have to only remember two formulas i.e. [ a + b + c ] 2 [a+b+c]^2 = a 2 a^2 + b 2 b^2 + c 2 c^2 + 2(ab +bc +ca) and a 3 a^3 + b 3 b^3 + c 3 c^3 - 3abc = (a + b + c)( a 2 a^2 + b 2 b^2 + c 2 c^2 - ab -bc -ca). By these two formulas we can easily equate the answer.

Maxis Jaisi
Jan 11, 2015

Subtracting the 1st equation from the 2nd:

a ( a 1 ) + b ( b 1 ) + c ( c 1 ) = 1 a(a-1)+b(b-1)+c(c-1) = 1 --- ( 1 )

Subtracting the 2nd equation from the 3rd:

a 2 ( a 1 ) + b 2 ( b 1 ) + c 2 ( c 1 ) = 1 a^{2}(a-1)+b^{2}(b-1)+c^{2}(c-1) = 1 --- ( 2 )

From equation 1, three equations can be deduced:

  1. a 1 = ( b + c ) a-1 = -(b+c)
  2. b 1 = ( a + c ) b-1 = -(a+c)
  3. c 1 = ( a + b ) c-1 = -(a+b)

Doing the necessary substitutions with the equations above into equation ( 1 ) and ( 2 ), we get:

a ( b + c ) + b ( a + c ) + c ( a + b ) = 1 a(b+c)+b(a+c)+c(a+b) = -1 --- ( a ) a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) = 1 a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b) = -1 --- ( b )

Subtracting the equation (a) from (b), expanding, cleaning up and factorising:

6 a b c + a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) = 0 6abc+a^{2}(b+c)+b^{2}(a+c)+c^{2}(a+b) = 0

Therefore,

a b c = 1 6 abc = \frac{1}{6}

Now with the 1st equation, by doing the necessary multiplications we can get

a b + b 2 + b c = b ab+b^{2}+bc = b

a 2 + a b + a c = a a^{2}+ab+ac = a

a c + b c + c 2 = c ac+bc+c^{2} = c

Adding up and simplifying,

a + b + c = a 2 + b 2 + c 2 + 2 ( a b + b c + a c ) a+b+c = a^{2}+b^{2}+c^{2} +2(ab+bc+ac)

Which reduces to a b + b c + a c = 1 2 ab+bc+ac = \frac{-1}{2}

Now we have all the information that we need. The equation that we want to find the value of can be written as

a b + a c + b c a b c \frac{ab+ac+bc}{abc}

Thus the value is 3 \boxed{-3}

I did by this way

Arun Krishna AMS - The Joker - 4 years, 6 months ago
William Chau
Jan 10, 2015

Because

ab+bc+ca = [(a+b+c)^2-(a^2+b^2+c^2)]/2 = [1^2-2]/2 = -1/2

and

a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)

<=> 3-3abc = 1*(2+1/2),

<=> abc = 1/6,

it follows that

1/a+1/b+1/c

= (ab+bc+ca)/(abc)

= (-1/2)/(1/6)

= -3.

Oliver Piattella
Jan 14, 2017

I wanted to use Newton's sums in order to solve this problem. So, let's define: e 1 a + b + c , e 2 a b + b c + c a , e 3 a b c . e_1 \equiv a + b + c\;, \qquad e_2 \equiv ab + bc + ca\;, \qquad e_3 \equiv abc\;. The first three Newton's sums, the ones given by the problem, are thus: p 1 a + b + c = e 1 , p 2 a 2 + b 2 + c 2 = e 1 p 1 2 e 2 , p 3 a 3 + b 3 + c 3 = e 1 p 2 e 2 p 1 + 3 e 3 . p_1 \equiv a + b + c = e_1\;,\\ p_2 \equiv a^2 + b^2 + c^2 = e_1p_1 - 2e_2\;,\\ p_3 \equiv a^3 + b^3 + c^3 = e_1p_2 - e_2p_1 + 3e_3\;. Since p 1 = 1 , p 2 = 2 , p 3 = 3 , p_1 = 1\;, \qquad p_2 = 2\;, \qquad p_3 = 3\;, we can easily determine e 1 = 1 , e 2 = 1 2 , e 3 = 1 6 . e_1 = 1\;, \qquad e_2 = -\frac{1}{2}\;, \qquad e_3 = \frac{1}{6}\;. Now, a 1 + b 1 + c 1 = e 2 e 3 , a^{-1} + b^{-1} + c^{-1} = \frac{e_2}{e_3}\;, and so we find the result a 1 + b 1 + c 1 = 3 , a^{-1} + b^{-1} + c^{-1} = -3\;,

Rocco Dalto
Nov 6, 2016

1 = ( a + b + c ) 2 = 2 + 2 ( a b + a c + b c ) 1 2 = a b + a c + b c {\bf 1 = (a + b + c)^2 = 2 + 2(ab + ac + bc) \implies \frac{-1}{2} = ab + ac + bc }

1 = ( a + b + c ) 3 = 3 + 3 ( a b + a c + b c ) ( a + b + c ) 3 a b c {\bf 1 = (a + b + c)^3 = 3 + 3(ab + ac + bc)(a + b + c) - 3abc \implies }

2 = 3 2 3 a b c {\bf -2 = \frac{-3}{2} - 3abc \implies }

4 = 3 6 a b c a b c = 1 6 {\bf -4 = -3 - 6abc \implies abc = \frac{1}{6} }

1 a + 1 b + 1 c = b c + a c + a b a b c = 3. {\bf \therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc} = -3. }

Saptarshi Sen
Dec 31, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...