The product-iest triangle?

Geometry Level 3

From this problem , we know that there exists a triangle A B C ABC for which its perimeter, area, and circumradius are 20, 18, and 4, respectively.

Without determining any of the side lengths or angles of this same triangle, evaluate the product 100 tan ( A 2 ) tan ( B 2 ) tan ( C 2 ) . 100 \tan \left( \dfrac A2 \right) \tan \left( \dfrac B2 \right) \tan \left( \dfrac C2 \right) .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let a a , b b , c c be the three sides of the triangle and R R its circumradius. Denote the requested product by P P .

In this solution we will use the following trigonometric identities:

  • Double angle formula sin ( 2 x ) = 2 sin x cos x \sin \left( 2x \right)=2\sin x \cos x

\ \

  • Extended Sine Rule a sin A = b sin B = c sin C = 2 R \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R

\ \

  • sin A + sin B + sin C = 4 cos A 2 cos B 2 cos C 2 ( 1 ) \sin A+\sin B+\sin C=4\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2} \ \ \ \ \ \ \ (1)

Here we go: P = 100 ( sin A 2 cos A 2 ) ( sin B 2 cos B 2 ) ( sin C 2 cos C 2 ) ( cos A 2 cos B 2 cos C 2 ) 2 = 100 ( 1 2 sin A ) ( 1 2 sin B ) ( 1 2 sin C ) 1 16 ( sin A + sin B + sin C ) 2 = 100 1 8 ( a 2 R ) ( b 2 R ) ( c 2 R ) 1 16 ( a 2 R + b 2 R + c 2 R ) 2 = 100 2 1 2 R 2 a b c 4 R ( a + b + c 2 R ) 2 = 100 1 R 2 [ A r e a of A B C ] ( P e r i m e t e r of A B C ) 2 4 R 2 = 400 18 20 2 = 18 \begin{aligned} P & =100\dfrac{\left( \sin \dfrac{A}{2}\cos \dfrac{A}{2} \right)\left( \sin \dfrac{B}{2}\cos \dfrac{B}{2} \right)\left( \sin \dfrac{C}{2}\cos \dfrac{C}{2} \right)}{{{\left( \cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2} \right)}^{2}}} \\ & =100\dfrac{\left( \dfrac{1}{2}\sin A \right)\left( \dfrac{1}{2}\sin B \right)\left( \dfrac{1}{2}\sin C \right)}{\dfrac{1}{16}{{\left( \sin A+\sin B+\sin C \right)}^{2}}} \\ & =100\dfrac{\dfrac{1}{8}\left( \dfrac{a}{2R} \right)\left( \dfrac{b}{2R} \right)\left( \dfrac{c}{2R} \right)}{\dfrac{1}{16}{{\left( \dfrac{a}{2R}+\dfrac{b}{2R}+\dfrac{c}{2R} \right)}^{2}}} \\ & =100\dfrac{2\dfrac{1}{2{{R}^{2}}}\dfrac{abc}{4R}}{{{\left( \dfrac{a+b+c}{2R} \right)}^{2}}} \\ & =100\dfrac{\dfrac{1}{\cancel{{{R}^{2}}}}\left[ Area\text{ of }ABC \right]}{\dfrac{{{\left( Perimeter\text{ of }ABC \right)}^{2}}}{4\ \cancel{{{R}^{2}}}}} \\ & =400\dfrac{18}{{{20}^{2}}} \\ & =\boxed{18} \\ \end{aligned}

Note : In fact the value of the circumradius is not needed.


Proof of ( 1 ) (1) sin A + sin B + sin C = 2 sin A + B 2 cos A B 2 + 2 sin C 2 cos C 2 = 2 cos C 2 cos A B 2 + 2 cos A + B 2 cos C 2 = 2 cos C 2 ( cos A B 2 + cos A + B 2 ) = 2 cos C 2 ( 2 cos A B 2 + A + B 2 2 cos A B 2 A + B 2 2 ) = 4 cos A 2 cos B 2 cos C 2 \begin{aligned} \sin A+\sin B+\sin C & =2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}+2\sin \dfrac{C}{2}\cos \dfrac{C}{2} \\ & =2\cos \dfrac{C}{2}\cos \dfrac{A-B}{2}+2\cos \dfrac{A+B}{2}\cos \dfrac{C}{2} \\ & =2\cos \dfrac{C}{2}\left( \cos \dfrac{A-B}{2}+\cos \dfrac{A+B}{2} \right) \\ & =2\cos \dfrac{C}{2}\left( 2\cos \dfrac{\dfrac{A-B}{2}+\dfrac{A+B}{2}}{2}\cos \dfrac{\dfrac{A-B}{2}-\dfrac{A+B}{2}}{2} \right) \\ & =4\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2} \\ \end{aligned}

Even better than my solution. Thank you.

I used 18 20 / 2 = A s = r = 4 R sin ( θ 2 ) \dfrac{18}{20/2} = \dfrac{ \mathcal A}s = r = 4R \prod \sin(\tfrac \theta2) and a b c 8 R 3 = sin ( θ ) \dfrac{abc}{8R^3} = \prod \sin(\theta) to get the value of cos ( θ 2 ) \prod \cos(\tfrac \theta2) .

Pi Han Goh - 3 months, 1 week ago

I've added an alternative solution.

Pi Han Goh - 2 months ago
Pi Han Goh
Apr 10, 2021

From here , we gather that tan ( A 2 ) = ( s b ) ( s c ) s ( s a ) , tan ( B 2 ) = ( s a ) ( s c ) s ( s b ) , tan ( C 2 ) = ( s a ) ( s b ) s ( s c ) \large \tan \left( \dfrac A2 \right) = \sqrt{\dfrac{(s-b)(s-c)}{s(s-a)} }, \quad \tan \left( \dfrac B2 \right) = \sqrt{\dfrac{(s-a)(s-c)}{s(s-b)} }, \quad \tan \left( \dfrac C2 \right) = \sqrt{\dfrac{(s-a)(s-b)}{s(s-c)} }

where s s is the semiperimeter.

Let P P denote the product in question, then ( P 100 ) 2 = tan 2 ( A 2 ) tan 2 ( B 2 ) tan 2 ( C 2 ) 0 = ( s b ) ( s c ) s ( s a ) ( s a ) ( s c ) s ( s b ) ( s a ) ( s b ) s ( s c ) 0 = ( s a ) ( s b ) ( s c ) s 3 0 = s ( s a ) ( s b ) ( s c ) s 4 0 = 1 8 2 1 0 4 0 P = 18 \begin{array} {r c l} \left( \dfrac P{100} \right)^2 &=& \tan^2 \left( \dfrac A2 \right) \tan^2 \left( \dfrac B2 \right) \tan^2 \left( \dfrac C2 \right)\\ \phantom0 \\ &=& \dfrac{(s-b)(s-c)}{s(s-a)} \cdot \dfrac{(s-a)(s-c)}{s(s-b)} \cdot \dfrac{(s-a)(s-b)}{s(s-c)} \\ \phantom0 \\ &=& \dfrac{ (s-a)(s-b)(s-c)}{s^3} \\ \phantom0 \\ &=& \dfrac{ s(s-a)(s-b)(s-c)}{s^4} \\ \phantom0 \\ &=& \dfrac{ 18^2}{10^4} \\ \phantom0 \\ P &= & \boxed{18} \end{array}

The penultimate step follows from Heron's formula .

Agent T
Apr 9, 2021

I did it a bit differently:P

From the previous problem's solutions I got to know that the side lengths are : 39.56 5 \boxed{\dfrac{39.56}{5}} , 28.44 5 \boxed{\dfrac{28.44}{5}} , 32 5 \boxed{\dfrac{32}{5}}

Looking closely at them I realised that the angles should not vary much from one another

Assuming that their values vary by 5°,

And since A+B+C=180°(by angle sum property of a triangle)

I found the values 55 , 60 , 65 \boxed{55,60,65} to work

Then I used the calculator to calculate the values of t a n 55 ° 2 \dfrac{tan55°}{2} , t a n 65 ° 2 \dfrac{tan65°}{2}

Bcz I knew that tan30°= 1 3 \dfrac{1}{√3}

And after multiplying these values I got, 18.6-18.9≈ 18 \boxed{18} ,which is the correct answer:)


Alternate approach as suggested by @Pi Han Goh :

diagram diagram

Using the law of cotangents,

cot ( α 2 ) s a {\dfrac{\cot \left({\tfrac{\alpha}{2}}\right)}{s-a}} = cot ( β 2 ) s b {\dfrac{\cot \left({\tfrac{\beta}{2}}\right)}{s-b}} = cot ( γ 2 ) s c {\dfrac{\cot \left({\tfrac{\gamma}{2}}\right)}{s-c}} = 1 r \dfrac{1}{r}


tan A 2 \textcolor{#3D99F6}{\tan{\tfrac{A}{2}}} = r s a \textcolor{forestgreen}{\dfrac{r}{s-a}}


tan B 2 \textcolor{#3D99F6}{\tan{\tfrac{B}{2}}} = r s b \textcolor{forestgreen}{\dfrac{r}{s-b}}


tan C 2 \textcolor{#3D99F6}{\tan{\tfrac{C}{2}}} = r s c \textcolor{forestgreen}{\dfrac{r}{s-c}}


Where r is the circumradius= 4 and s is the semi-perimeter=10 Plugging in the values of s ,r ,a ,b ,and c we get,


tan A 2 \textcolor{#3D99F6}{\tan{\tfrac{A}{2}}} = 20 50 39.56 \textcolor{forestgreen}{\dfrac{20}{50-39.56}}


tan B 2 \textcolor{#3D99F6}{\tan{\tfrac{B}{2}}} = 20 50 28.44 \textcolor{forestgreen}{\dfrac{20}{50-28.44}}


tan C 2 \textcolor{#3D99F6}{\tan{\tfrac{C}{2}}} = 20 50 32 \textcolor{forestgreen}{\dfrac{20}{50-32}}


= > tan A 2 = 1.91712278 =>\tan{\dfrac{A}{2}} = 1.91712278


= > tan B 2 = 0.927352159 =>\tan{\dfrac{B}{2}} =0.927352159


= > tan C 2 = 1.111111 =>\tan{\dfrac{C}{2}} = 1.111111


incomplete

If you already got the three sides lengths, you can use this instead to get the exact answer.

Pi Han Goh - 2 months ago

Log in to reply

Thank you for sharing! :D

Agent T - 1 month, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...