The Rivative

Calculus Level 4

Let f ( x ) = 2 x x 2 f(x)= \dfrac {2^x} {x^2} .

Evaluate 100 f ( 2 ) \left \lfloor 100 \ {f}''(2) \right \rfloor .


The answer is 59.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Remember the rules , soldiers. I will not post them here.

Back to the problem, f ( x ) = 2 x x 2 f(x) = \dfrac{2^x}{x^2} . This means

f ( x ) = ln 2 2 x x 2 2 x 2 x x 4 f ( x ) = 2 x ( x ln 2 2 ) x 3 f'(x) = \dfrac{\ln{2} \cdot 2^x \cdot x^2 - 2^x \cdot 2x}{x^4} \Rightarrow f'(x) = \dfrac{2^x ( x \ln{2} - 2)}{x^3} .

Applying another derivative, we get

f ( x ) = 2 x ( x ln 2 2 ) x 3 f ( x ) = ( ln 2 2 x ( x ln 2 2 ) ) x 3 ( 2 x ( x ln 2 2 ) ) 3 x 2 x 6 f'(x) = \dfrac{2^x ( x \ln{2} - 2)}{x^3} \Rightarrow f''(x) = \dfrac{(\ln{2} \cdot 2^x (x \ln{2} - 2)) x^3 - (2^x ( x \ln{2} - 2)) 3x^2 }{x^6} .

f ( x ) = 2 x ( x 2 ln 2 4 4 x ln 2 + 6 ) x 4 f ( 2 ) = ( 2 ln 2 4 4 ln 2 + 3 ) 2 \Rightarrow f''(x) = \dfrac{2^x (x^2 \: \ln^2{4} - 4 x \ln{2} + 6)}{x^4} \Rightarrow f''(2) = \dfrac{(2 \: \ln^2{4} - 4 \ln{2} + 3)}{2} .

Considering ln 2 0.69 \ln{2} \approx 0.69 , we get that f ( 2 ) 0.596 f''(2) \approx 0.596 . Thus, the biggest integer that is smaller than 59.6 59.6 is 59. \boxed{59.}

We're soldiers now?

minimario minimario - 7 years, 5 months ago

Log in to reply

Haven't we always been?

Guilherme Dela Corte - 7 years, 5 months ago
Gaurang Pansare
Dec 22, 2013

Let y = 2 x x 2 y=\frac{2^{x}}{x^{2}}

Now differentiating using division rule,

y = x 2 2 x l n ( 2 ) 2 x 2 x x 4 y'=\frac{x^{2}*2^{x}ln(2)-2^{x}*2x}{x^{4}}

You can express this as

y = y l n ( 2 ) 2 y x y'=yln(2)-\frac{2y}{x}

Again differentiating,

y = y l n ( 2 ) x ( 2 y ) 2 y x 2 y''=y'ln(2)-\frac{x(2y')-2y}{x^{2}}

Therefore,

y = y l n ( 2 ) 2 y x + 2 y x 2 y''=y'ln(2)-\frac{2y'}{x}+\frac{2y}{x^{2}}

Now, putting x=2;

y ( 2 ) = 1 \boxed{y(2)=1}

y ( 2 ) = l n ( 2 ) 1 \boxed{y'(2)=ln(2)-1}

y ( 2 ) = l n ( 2 ) ( l n ( 2 ) 1 ) 2 ( l n ( 2 ) 1 ) 2 + 1 2 y''(2)=ln(2)(ln(2)-1)-\frac{2(ln(2)-1)}{2}+\frac{1}{2}

= ( l n 2 ) 2 2 l n ( 2 ) + 3 2 =(ln2)^{2}-2ln(2)+\frac{3}{2}

= 0.5942 =\boxed{0.5942} ...approx

Therefore, 100 y ( 2 ) = 59.42 100y''(2)=59.42

Since answer has to be an integer, 100 y ( 2 ) = 59 100y''(2)=59

I don't know how you are getting 100 y ( 2 ) = 59.42 100y^{''}(2)=59.42 . I am getting the same expression as you but the calculator evaluates it to 98.85 98.85 .

Nishant Sharma - 7 years, 5 months ago

Log in to reply

You are supposed to take natural log (to the base 'e').

Gaurang Pansare - 7 years, 5 months ago

Log in to reply

I also make the same mistake with Nishant Sharma, but when you say that we have to take the ln \ln , I was just like "Oh no! Why am I so stupid?" Thanks for your explanation...:)

敬全 钟 - 7 years, 5 months ago
Abubakarr Yillah
Jan 3, 2014

Applying the quotient rule, {f^'}({x})=\frac{{x^2}\times{2^x}{ln2}-{2^x}\times{2x}}{x^4} {f^''}({x})=\frac{{x^4}\times(({2x}\times{2^x}({ln2})^2+{2^x}({ln2})\times{2x})-({2^x}\times{2}+{2x}\times{2^x}{ln2}))-({x^2}{2^x}{ln2}-{2^x}{2x})\times{4x^3}}{x^8} Therefore {100}{f^''}{(2)}=\boxed{59}

Note 100 f ( 2 ) 59 100 f''(2) \neq 59 , but 100 f ( 2 ) = 59 \left \lfloor 100 f''(2) \right \rfloor = 59 .

Guilherme Dela Corte - 7 years, 4 months ago

Log in to reply

yea i know thanks..i could not include it using the formatting guide

Abubakarr Yillah - 7 years, 4 months ago

Log in to reply

Typing \left \lfloor 100 \pi \right \rfloor = 314 will lead you to 100 π = 314 \left \lfloor 100 \pi \right \rfloor = 314

I use this LaTeX baby to type things better.

Guilherme Dela Corte - 7 years, 4 months ago

Log in to reply

@Guilherme Dela Corte ait thanks..

Abubakarr Yillah - 7 years, 4 months ago
Leonardo Chandra
Dec 23, 2013

f(x) = 2 x / x 2 2^x/x^2

Thus, f'(x)= d / d x ( 2 x / x 2 ) d/dx(2^x/x^2)

Use the product rule, d / d x ( u v ) d/dx(u*v) = v ( d u ) / ( d x ) + u ( d v ) / ( d x ) v ( du)/( dx)+u ( dv)/( dx) , where u = 2 x u = 2^x and v = 1 / x 2 v = 1/x^2 :

f'(x)= ( d / d x ( 2 x ) ) / x 2 + 2 x ( d / d x ( 1 / x 2 ) ) (d/dx(2^x))/x^2+2^x (d/dx(1/x^2))

The derivative of 2 x 2^x is 2 x l o g ( 2 ) 2^x log(2) :

f'(x)= 2 x ( d / d x ( 1 / x 2 ) ) + 2 x l o g ( 2 ) / x 2 2^x (d/dx(1/x^2))+2^x log(2)/x^2

Use the power rule, d / d x ( x n ) d/dx(x^n) = n x ( n 1 ) n x^(n-1) , where n = -2:-------> d / d x ( 1 / x 2 ) = d / d x ( x ( 2 ) ) d/dx(1/x^2) = d/dx(x^(-2)) = 2 x ( 3 ) -2 x^(-3) :

f ' (x) = ( 2 x l o g ( 2 ) ) / x 2 + ( 2 ) / x 3 2 x (2^x log(2))/x^2+(-2)/x^3 2^x

Differentiating it again

f "(x) = d / d x ( ( 2 x ( x l o g ( 2 ) 2 ) ) / x 3 ) d/dx((2^x (x log(2)-2))/x^3) = ( 2 x ( x 2 l o g 2 ( 2 ) 4 x l o g ( 2 ) + 6 ) ) / x 4 (2^x (x^2 log^2(2)-4 x log(2)+6))/x^4

Therefore, f" (2) = 3 / 2 + l o g 2 ( 2 ) l o g ( 4 ) 3/2+log^2(2)-log(4) that's approximately 0.594.

Hence 100*f"(2) = 59.4

Use \frac{\pi}{e} or \dfrac{\pi}{e} for generating better fractions: π e \frac{\pi}{e}

It is much better than 3 / 2 3/2 .

Guilherme Dela Corte - 7 years, 4 months ago

is there not any other method to solve this.. this is bit too long and tedious

Yash Shukla - 7 years, 3 months ago
Ahmed Deyaa
May 3, 2014

taking ln for both sides ln(y) = ln (2)^x - ln (x)^2

ln(y) =x ln (2) - 2 ln (x)

y'/y= ln (2) - 2/x

y' = y ( ln(2)- 2/x )

y'' = y' ( ln(2) - 2/x) + 2y/x^2

y'' = y [ (ln (2) - 2/x)^2 + 2/x^2 ]

when x = 2 ... y=1

so y'' = [ ln(2)- 1 ] ^2 + 0.5

100y'' = 100*0.5941

so 100y'' = 59.41

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...