The sequence about the year

Algebra Level 2

1 2 + 2 2 + 3 2 + + 201 2 2 + 201 3 2 + 201 4 2 1 + 2 + 3 + + 2012 + 2013 + 2014 = ? \large \frac{1^2+2^2+3^2+\cdots+2012^2+2013^2+2014^2}{1+2+3+\cdots+2012+2013+2014} = \ ?

Hint : 1 2 + 2 2 + 3 2 + + n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) 1^2 + 2^2 + 3^2 + \cdots + n^2= \frac16 n(n+1)(2n+1) .


The answer is 1343.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Michael Diao
Jun 3, 2014

The formula for the sum of the first n n positive perfect squares is

n ( n + 1 ) ( 2 n + 1 ) 6 . \frac{n(n+1)(2n+1)}{6}.

The formula for the sum of the first n n positive integers is

n ( n + 1 ) 2 . \frac{n(n+1)}{2}.

Thus, by dividing the two quantities, we get

n ( n + 1 ) ( 2 n + 1 ) 6 n ( n + 1 ) 2 = 2 n + 1 3 . \frac{\frac{n(n+1)(2n+1)}{6}}{\frac{n(n+1)}{2}} = \frac{2n+1}{3}.

Substituting, we get

4029 3 = 1343 . \frac{4029}{3}=\boxed{1343}.

It is a beautiful solution.

Evan Huynh - 5 years, 5 months ago

How to find a formula for finding the nth term and the sum of first n numbers?

Viraj Rane - 6 years, 10 months ago

Log in to reply

The sum of the first n numbers is given by the expression,

n(n+1)/2.

For Example, In 1+2+3, n=3 The sum of the three numbers is 3(3+1)/2=6.

For the nth term, the formula is a+(n-1)d, where a is the first term, n is the term you want to find and d is the common difference between any two terms.

For example, In 2, 4, 6, 8... To find the 20th term, a=2; n=20; d=2 (4-2);

Therefore, the 20th term is: a+(n-1)d = 2+19(2) = 40.

Shashank Rammoorthy - 6 years, 10 months ago

Can we derive formulae for findin1^2+2^2-------+n^2 =n(n+1)(2n+1)/6

ankit raj - 4 years, 10 months ago

Amazing. I just can not believe that I did not see it

Syed Hamza Khalid - 4 years, 1 month ago

To be honest, this is quite easy to think of this way... for there is only one EASY and obvious way to solve this problem

Auguste Richards - 4 years ago
Julian Poon
Jun 4, 2014

For those who dont have the algebraic background to solve this, this is an alternative solution: T 1 = 1 2 1 T 2 = 1 2 + 2 2 1 + 2 T 3 = 1 2 + 2 2 + 3 2 1 + 2 + 3 . . . T 1 , T 2 , T 3 , T 4 . . . 1 , 5 3 , 7 3 , 3... 3 3 , 5 3 , 7 3 , 9 3 . . . T n = 2 n + 1 3 T 2014 = 2 ( 2014 ) + 1 3 = 1343 { T }_{ 1 }=\frac { { 1 }^{ 2 } }{ 1 } \\ { T }_{ 2 }=\frac { { 1 }^{ 2 }+{ 2 }^{ 2 } }{ 1+2 } \\ { T }_{ 3 }=\frac { { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 } }{ 1+2+3 } \\ ...\\ { T }_{ 1 },\quad { T }_{ 2 },\quad { T }_{ 3 },\quad { T }_{ 4 }...\\ 1,\frac { 5 }{ 3 } ,\frac { 7 }{ 3 } ,3...\\ \frac { 3 }{ 3 } ,\frac { 5 }{ 3 } ,\frac { 7 }{ 3 } ,\frac { 9 }{ 3 } ...\\ \therefore { T }_{ n }=\frac { 2n+1 }{ 3 } \\ { T }_{ 2014 }=\frac { 2(2014)+1 }{ 3 } =1343

How did you derived the formula 2n+1 upon 3 ???? Please tell. Didn't get it up there.

Shubham Gaikwad - 7 years ago

Log in to reply

When you are trying to convert a series into a formula, sometimes you have to just... see the pattern. The pattern here is rather simple though. They way Julian has this set up, he is in essence making an arithmetic sequence. You can use the formula for the nth-term on an arithmetic sequence to make a formula like this:

a n = a 1 + ( n 1 ) d a_{n}=a_{1}+(n-1)d

Where a 1 a_{1} is the first term and d d is the difference between any two consecutive terms. Here, a 1 a_{1} is 1 and d d is 2 3 \frac{2}{3} . So just plug in those two and simplify: a n = 1 + ( n 1 ) ( 2 3 ) = 2 3 n + 1 3 = 2 n + 1 3 a_{n}=1+(n-1)(\frac{2}{3})=\frac{2}{3}n+\frac{1}{3}=\frac{2n+1}{3}

Louis W - 6 years ago

Log in to reply

But how do you know that it's an arithmetic sequence? A sequence that begins 1, 2, 3, 4 could be just the sequence of natural numbers, but without knowing any further terms of the sequence, for all you know it could be the sequence of x 4 10 x 3 + 35 x 2 26 x + 24 24 \frac{x^4 - 10x^3 + 35x^2 - 26x + 24}{24} for successive x x .

Stewart Gordon - 6 years ago

Log in to reply

@Stewart Gordon You never KNOW, but you can make an educated guess. And the more often it happens, the more proof you have that it is right.

Alex Li - 5 years, 10 months ago

@Stewart Gordon We can always prove a sequence by induction if we really need to.

Thicky Bushi - 5 years, 5 months ago

I am the 12000th solver!

Mohammad Farhat - 2 years, 8 months ago
Anoir Trabelsi
Jun 3, 2014

W e k n o w t h a t : 1 ² + 2 ² + 3 ² + . . . + n ² = n ( n + 1 ) ( 2 n + 1 ) 6 a n d : 1 + 2 + 3 + . . . + n = n ( n + 1 ) 2 S o : 1 ² + 2 ² + 3 ² + . . . + n ² 1 + 2 + 3 + . . . + n = n ( n + 1 ) ( 2 n + 1 ) 6 n ( n + 1 ) 2 = n ( n + 1 ) ( 2 n + 1 ) 3 n ( n + 1 ) = 2 n + 1 3 F o r n = 2014 w e h a v e : 2 n + 1 3 = 4029 3 = 1343 1 ² + 2 ² + 3 ² + . . . + 2014 ² 1 + 2 + 3 + . . . + 2014 = 1343 We\quad know\quad that\quad :\\ 1²\quad +\quad 2²\quad +\quad 3²\quad +...+n²\quad =\quad \frac { n(n+1)(2n+1) }{ 6 } \\ and\quad :\\ 1\quad +\quad 2\quad +\quad 3\quad +\quad ...+\quad n\quad =\quad \frac { n(n+1) }{ 2 } \\ So\quad :\\ \frac { 1²+2²+3²+...+n² }{ 1+2+3+...+n } =\quad \frac { \frac { n(n+1)(2n+1) }{ 6 } }{ \frac { n(n+1) }{ 2 } } \quad =\quad \frac { \\ \frac { n(n+1)(2n+1) }{ 3 } }{ n(n+1) } \quad =\quad \frac { 2n+1 }{ 3 } \\ \\ For\quad n\quad =\quad 2014\quad we\quad have\quad :\\ \\ \frac { 2n+1 }{ 3 } =\quad \frac { 4029 }{ 3 } =\quad 1343\\ \\ \therefore \quad \frac { 1²+2²+3²+...+2014² }{ 1+2+3+...+2014 } \quad =\quad 1343

Wq M
Sep 1, 2015

We have ( n + 1 ) 3 n 3 = 3 n 2 + 3 n + 1 (n+1)^3-n^3=3*n^2+3*n+1 Then, let A = 1 2 + 2 2 + 3 2 + + 201 2 2 + 201 3 2 + 201 4 2 1 + 2 + 3 + + 2012 + 2013 + 2014 A= \frac{1^2+2^2+3^2+\ldots+2012^2+2013^2+2014^2}{1+2+3+\ldots+2012+2013+2014} Then 3 ( A + 1 ) = 2 3 1 3 + 3 3 2 3 + 4 3 3 3 + + 201 3 3 201 2 3 + 201 4 3 201 3 3 + 201 5 3 201 4 3 2014 1 + 2 + 3 + + 2012 + 2013 + 2014 3*(A+1)= \frac{2^3-1^3+3^3-2^3+4^3-3^3+\ldots+2013^3-2012^3+2014^3-2013^3+2015^3-2014^3-2014}{1+2+3+\ldots+2012+2013+2014}

After cancellation we have 3 ( A + 1 ) = 201 5 3 2015 1 + 2 + 3 + + 2012 + 2013 + 2014 3*(A+1)= \frac{2015^3-2015}{1+2+3+\ldots+2012+2013+2014} After applying the formula of the sum of the first n n positive integers we have 3 ( A + 1 ) = 201 5 3 2015 2015 2014 1 2 3*(A+1)= \frac{2015^3-2015}{2015*2014*\frac{1}{2}} Then we have 3 ( A + 1 ) = 4032 3*(A+1)=4032 So we get the value of A A = 1343 A=1343

Ahmed Abdelbasit
Jun 4, 2014

if we calculate the first terms as : 1 2 1 \frac{1^{2}}{1} = 1 = 3 3 \frac{3}{3} and the second term can be written as : 1 2 + 2 2 1 + 2 \frac{1^{2}+2^{2}}{1+2} = 5 3 \frac{5}{3} .......... so in general : the n t h n^{th} term can be represented as : 1 + 2 n 3 \frac{1+2n}{3} .......... so : the 201 4 t h 2014^{th} term is 1 + 2014 2 3 \frac{1+2014*2}{3} = 1343

Urvil Kenia
Jun 3, 2014

Okay if you observe the series and divide it .. 1^2÷1=1 i.e. 3/3 (1^2+2^2)÷(1+2)=5/3...... .... And so on We have to find series till 2014 so we will use the 2015th odd number in numerator and 3 in denominator Which gives us 4029/3=1343 Which is the answer

the hint made the sum much more easier. The sum should have been given without a hint. Then it would be more challenging

Ondřej Chmelík
May 19, 2019

The solution is 1343.

Betty BellaItalia
Apr 23, 2017

Patrick Pfenning
Jul 2, 2016

Python:
a=0
b=0
c=1
while(c<=2014):
a+=c*c
b+=c
c+=1
print(a/b)







screwmath

= 2014 X 2015 X 2 X 2014 + 1 2 X 3 X ( 1 + 2 + 3 + . . . + 2014 ) \frac{2014 X 2015 X 2 X 2014 +1}{2 X 3 X (1+2+3+...+2014) } = 2014 X 2015 X 4029 2 X 3 X 2015 X 1007 \frac{2014 X 2015 X 4029}{2 X 3 X 2015 X 1007 } = 2 X 1 X 4029 2 X 3 X 1 X 1 \frac{2 X 1 X 4029}{2 X 3 X 1 X 1} = 4029 3 \frac{4029}{3} = 1343

1 2 + 2 2 + 3 2 + . . . . . . + 201 2 2 + 201 3 2 + 201 4 2 1 + 2 + 3 + . . . . . . + 2012 + 2013 + 2014 \Large{\frac{1^2 + 2^2 + 3^2 +......+ 2012^2 + 2013^2 + 2014^2}{1 + 2+ 3 + ......+ 2012 + 2013 + 2014}}

\Leftrightarrow 1 6 n ( n + 1 ) ( 2 n + 2 ) 1 2 n ( 1 + U n ) \Large{\frac{\frac{1}{6}n(n + 1)(2n + 2)}{\frac{1}{2}n (1 + Un)}}

\Leftrightarrow 1 6 n ( n + 1 ) ( 2 n + 2 ) 1 2 n ( 1 + n ) \Large{\frac{\frac{1}{6}n(n + 1)(2n + 2)}{\frac{1}{2}n (1 + n)}} , f o r U n = n , for \quad Un = n

\Leftrightarrow 1 3 × ( 2 n + 2 ) \frac{1}{3} \times (2n + 2)

\Leftrightarrow 1 3 × ( 2 × 2014 + 2 ) = 1343 \frac{1}{3} \times (2 \times 2014 + 2) = \boxed{1343}

Paulus Wongso
Oct 6, 2015

most people uses a direct formula for this, but i found that sometimes it is easier to do a direct approach to these kind of questions e.g. 1^2/1 = 1 = 3/3

(1^2+2^2)/(1+2) = 5/3

(1^2+2^2+3^2)/(1+2+3) = 14/6 = 7/3

(1^2+2^2+3^2+4^2)/(1+2+3+4) = 30/10 = 3 = 9/3

from these results we can see a pattern

the denominator will always be 3, while the numerator is form in a pattern; 3, 5, 7, 9, ...

so the only thing need to be done is find the pattern equation for the numerator.

for this example, the pattern can be simplify;

3, 5, 7, 9, ... = 3, (3+2), (3+4), (3+6), ...

from that, an equation to the pattern is made: 3+2(n-1).

now we need to test if the equation above will satisfy the pattern.

Testing

n | result

1 | 3

2 | 5

3 | 7

4 | 9

the equation satisfy the pattern!

therefore, the complete equation to the example is (3+2(n-1))/3

now, since the queation ends with 2014, we subtitute n as 2014.

(3+2(2014-1))/3 = 4029/3 = 1343

We can do it 1^2/1=1 (1^1+2^2)/3=1.6666666 (1^1+2^2+3^3)/6=2.3333333 So it is increasing by 0.6666667 So answer is 2014×0.6666667=1342.66 Rounding off. 1343

Ashish Mohanka - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...