The sum of cubes

Algebra Level 1

If the sum of two numbers is 11, and the sum of their squares is 99, find the sum of their cubes.


The answer is 968.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

19 solutions

Victor Loh
Jul 10, 2014

Let the two numbers be a a and b b . We have

a + b = 11 ( 1 ) a+b=11\cdots(1)

a 2 + b 2 = 99 ( 2 ) a^2+b^2=99\cdots(2)

Since, upon factorisation,

a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) ( 3 ) a^3+b^3=(a+b)(a^2+b^2-ab)\cdots(3)

we only have to find a b ab .

From ( 2 ) (2) ,

a 2 + b 2 = ( a + b ) 2 2 a b = 99 ( 4 ) a^2+b^2=(a+b)^2-2ab=99\cdots(4)

Substituting ( 1 ) (1) into ( 4 ) (4) , we have

1 1 2 2 a b = 99 11^2-2ab=99

121 2 a b = 99 \implies 121-2ab=99

2 a b = 121 99 = 22 \implies 2ab=121-99=22

a b = 22 2 = 11 \implies ab=\frac{22}{2}=11

Substituting ( 1 ) , ( 2 ) (1),(2) and ( 4 ) (4) into ( 3 ) (3) , we have

a 3 + b 3 = 11 ( 99 11 ) a^3+b^3=11(99-11)

= 11 × 88 = 968 , =11\times 88=\boxed{968},

and we are done.

Mental arithmetic!

Krishna Ar - 6 years, 11 months ago

But what is the value of the two numbers.

Anuj Shikarkhane - 6 years, 11 months ago

Log in to reply

Although we do not need to find the values of the variables a and b , here are their values, just for the sake of your mental satisfaction: a + b = 11 a+b = 11 1 \rightarrow 1
a 2 + b 2 = 99 a^2+b^2=99 2 \rightarrow 2
From 1, we can write,
b = ( 11 a ) b=(11-a) 3 \rightarrow 3
Substituting value of b from 3 into 2, we get,
a 2 + ( 11 a ) 2 = 99 a^2+ (11-a)^2 = 99
a 2 + ( 1 1 2 + a 2 22 a ) = 99 a^2+ (11^2+a^2-22a) = 99
a 2 + 121 + a 2 22 a 99 = 0 a^2+121+a^2-22a-99=0
2 a 2 22 a + 22 = 0 2a^2-22a+22=0
a 2 11 a + 11 = 0 a^2-11a+11=0


Applying Quadratic Formula,
a = ( 11 ) ± ( 11 ) 2 ( 4 1 11 ) ( 2 1 ) a= \frac {-(-11)\pm \sqrt{(-11)^2-(4*1*11)}}{(2*1)}
a = 11 ± 121 44 2 a= \frac {11\pm \sqrt{121-44}}{2}
a = 11 ± 77 2 a= \frac {11\pm \sqrt{77}}{2}
So, variable a has two possible values, which means no matter which value you assign to a, the other value automatically gets assigned to b, as they are basically the two roots of the given quadratic equation.
So,
a , b = 11 ± 77 2 a,b= \frac {11\pm \sqrt{77}}{2}

Rakshit Pandey - 6 years, 11 months ago

Log in to reply

Oh!Thanks for your solution.

Anuj Shikarkhane - 6 years, 10 months ago

Log in to reply

@Anuj Shikarkhane @Anuj Shikarkhane You're welcome.

Rakshit Pandey - 6 years, 10 months ago

Log in to reply

Same Solution

Mark Joseph Martinez - 5 years, 9 months ago

You made this simple question too difficult. Why calculate the individual value if we can solve this the other way?

Sanjeet Raria - 6 years, 9 months ago

Not asking for what the value of a and b, are. Just looking for the sum of their cubes. ;-)

Guy Post - 5 years, 11 months ago

The values of the two numbers is irrelevant, since the sum of the cubes can be found out another way, but if you want to solve it that (lengthier) way, just find the solutions to x 2 11 x 11 = 0 x^{2} - 11x -11 = 0 , plug in the value (s) of x in x + y = 11 x + y = 11 and then find x 3 + y 3 x^{3} + y^{3} .

B.S.Bharath Sai Guhan - 6 years, 11 months ago

no need to find that

Siddhesh Patel - 6 years, 10 months ago

quite impressive

VAIBHAV borale - 6 years, 10 months ago

Mental arithmetic!

Pratap Singh - 6 years, 10 months ago

Good and simple solution..thanks.

K.K.GARG,India

Krishna Garg - 6 years, 11 months ago

this is not the easiest way to answer

aswin suresh - 6 years, 10 months ago

I WAS RIGHT THERE! I made a mistake! FUU...

Adam Zaim - 6 years, 8 months ago

How can a+b and ab = 11.. i got the answer . But ..... ( what values of a and b will satisfy the condition )

a=11/2 - sqrt (77/4) b=11/2+ sqrt (77/4) a+b= 11/2×2=11 ab=(11/2)^2 - 77/4=44/4=11

Madalin Dobrita - 4 years, 11 months ago

Why do you presume a, b will be integers?

Parthapratim Chakravorty - 3 years, 8 months ago

Let a , b

Given a+b = 11 & a^2 + b^2 = 99

from (a+b)^2 = a^2 + b^2 + 2ab we will get ab = 11

now (a+b )(a^2 + b^2) = a^3+ b^3 + ab(a+b)

11 * 99 = a^3+ b^3 + 11 * 11 ==> a^3+ b^3 = 11 (99-11) = 11* 88 = 968

Matthew Kendall
Aug 13, 2015

When multiplying ( a + b ) (a+b) and ( a 2 + b 2 ) (a^2 + b^2) we get: ( a + b ) ( a 2 + b 2 ) = a 3 + a 2 b + a b 2 + b 3 = ( a 3 + b 3 ) + a b ( a + b ) = 11 99 ( 1 ) \begin{aligned} (a+b)(a^2 + b^2) = a^3 + a^2b + ab^2 + b^3 \\ = (a^3 + b^3) + ab(a+b) = 11 \cdot 99 \cdots (1) \end{aligned} To find a b ab , we simply square ( a + b ) (a+b) and subtract it from ( a 2 + b 2 ) (a^2 + b^2) to get ( a 2 + 2 a b + b 2 ) ( a 2 + b 2 ) = 2 a b = 1 1 2 99 = 22 a b = 11. (a^2 + 2ab + b^2) - (a^2 + b^2) = 2ab = 11^2 - 99 = 22 \Rightarrow ab = 11. Now we substitute that back into our original equation (1): ( a 3 + b 3 ) + 11 ( a + b ) = ( a 3 + b 3 ) + 1 1 2 = 11 99 a 3 + b 3 = 11 ( 99 11 ) = 968 \begin{aligned} (a^3 + b^3) + 11(a+b) = (a^3 + b^3) + 11^2 = 11 \cdot 99 \\ a^3 + b^3 = 11 \cdot (99-11) = \boxed{968} \end{aligned}

Hassan Raza
Jul 31, 2014

G i v e n t h a t a + b = 11 . . . . . . . . . . ( i ) a 2 + b 2 = 99 . . . . . . . . . . ( i i ) S t e p I a 2 + b 2 = a 2 + b 2 + 2 a b 2 a b = ( a + b ) 2 2 a b 99 = ( 11 ) 2 2 a b a 2 + b 2 = 99 a n d a + b = 11 99 = 121 2 a b = > 2 a b = 121 99 = > a b = 22 2 = > a b = 11 S t e p I I N o w F i n d a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) = > = ( 11 ) [ ( a 2 + b 2 ) a b ] a + b = 11 = > = ( 11 ) ( 99 11 ) = > = ( 11 ) ( 88 ) = > a 3 + b 3 = 968 A n s w e r Given\quad that\\ a+b=11\quad ..........\quad (i)\\ { a }^{ 2 }+{ b }^{ 2 }=99\quad ..........\quad (ii)\\ Step\quad I\\ { a }^{ 2 }+{ b }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }+2ab-2ab\\ \quad \quad \quad \quad \quad ={ (a+b) }^{ 2 }-2ab\\ \quad \quad \quad 99={ (11) }^{ 2 }-2ab\qquad \qquad \because \quad { a }^{ 2 }+{ b }^{ 2 }=99\quad and\quad a+b=11\\ \quad \quad \quad 99=121-2ab\\ =>2ab=121-99\\ =>ab=\frac { 22 }{ 2 } =>\quad ab=\boxed { 11 } \\ Step\quad II\\ \qquad Now\quad Find\\ \qquad { a }^{ 3 }+{ b }^{ 3 }=(a+b)({ a }^{ 2 }-ab+{ b }^{ 2 })\\ =>\qquad \quad \quad =(11)\left[ ({ a }^{ 2 }+{ b }^{ 2 })-ab \right] \qquad \because \quad a+b=11\\ =>\qquad \quad \quad =(11)(99-11)\\ =>\qquad \quad \quad =(11)(88)\\ =>{ a }^{ 3 }+{ b }^{ 3 }=\boxed { 968 } \quad Answer

Akash Kumar
Jul 11, 2014

let x+y=11, x.^2+y.^2=99; then (x+y).^2=x.^2+y.^2+2xy ; 11 11=99+2xy; xy=11; now (x+y).^3=x.^3+y.^3+3xy(x+y) ; 11 11 11=x.^3+y.^3+3 11 11; x.^3+y.^3=11 11(11-3); x.^3+y.^3=121*8; x.^3+y.^3=968;answer

Tahir Imanov
Oct 14, 2015

a 2 + b 2 = ( a + b ) 2 2 a b = 99 a^2 +b^2 =(a+b)^2 -2ab=99

2 a b = 121 99 = 22 2ab=121-99=22

a b = 11 ab=11

a 3 + b 3 = a^3 +b^3 =

= ( a + b ) ( a 2 + b 2 a b ) = =(a+b)(a^2 +b^2 -ab)=

= 11 ( 99 11 ) = 11 88 = 968 =11•(99-11)=11•88=968

Dieuler Oliveira
Jul 30, 2014

Let's think of a a and b b as roots of a quadratic polynomial as following: x 2 11 x + q = 0 x^{2}-11x+q=0 Now, by using Newton's Theorem, we find q:

S 2 11. S 1 + q . S 0 = 0 S_{2}-11.S_{1}+q.S_{0}=0 99 11.11 + q . 2 = 0 99-11.11+q.2=0 q = 11 q=11 Now we know that a and b are roots of the polynomial:

x 2 11 x + 11 = 0 x^{2}-11x+11=0

Again, using Newton's Theorem:

S 3 11. S 2 + 11. S 1 = 0 S_{3}-11.S_{2}+11.S_{1}=0 S 3 11.99 + 11.11 = 0 S_{3}-11.99+11.11=0 S 3 = 88.11. S_{3}=88.11. S 3 = 968 . S_{3}=\boxed{968}.

How did you get x 2 11 x + q = 0 x^2 -11x +q = 0 in the first place - in the spirit of showing your working - i think you missed a step or two :-)

Tony Flury - 5 years, 9 months ago
Pratik Jain
Jul 9, 2014

(x+y)^3 = x^3 + 3xy (x+y) +y^3 sum of cubes = 11^3 - 33xy = 11^3 - 33 ((x+y)^2 - (x^2 + y^2) )/2 = 11^3 - 33 ( 121 - 99 )/2
= 11^3 - 33 * 11 = 11 * (121-33 )
= 88*11 = 968

Thanks ....

Jeev Sharma - 6 years, 11 months ago
Ganesh Gns
Nov 29, 2015

Can any body explain me if a+b =11 then how ab = 11

If x+ y = xy, then y=x/(x-1).

x+y =xy can be rewritten as -xy + y = -x

y(1-x) = -x

y = -x/(1-x)

y = x/(x-1)

Joe Mercurio - 5 years, 6 months ago

It is given that,
a+b = 11 . . . . . . . (1)
a^2+b^2 =99 . . . . .(2)
Now,we know
(a+b)^2 = a^2+2ab+b^2
11^2 = 99 + 2ab . . . . from (1) and (2)
2ab = 22
ab = 11 . . . . . . . .(3)
Now,we know
(a + b)^3 = a^3 + b^3 + 3ab( a + b )
11^3 = a^3 + b^3 + 3(11)(11) . . . . . . from (1),(2) and (3)
1331 = a^3 + b^3 + 363
a^3 + b^3 = 968







Aditta Nishad
Jul 29, 2015

First break a^2+b^2 then use a^3+b^3

Ruth Day
Jun 30, 2015

By factorisation: a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2}) Now, upon considering the perfect square identity: a b = 1 2 ( ( a + b ) 2 ( a 2 + b 2 ) ) ab=\frac{1}{2}((a+b)^{2}-(a^2+b^2)) a 3 + b 3 = ( a + b ) ( a 2 + b 2 1 2 ( ( a + b ) 2 ( a 2 + b 2 ) ) ) \implies a^{3}+b^{3}=(a+b)(a^{2}+b^{2}-\frac{1}{2}((a+b)^{2}-(a^{2}+b^{2}))) Substituting in the given values: a 3 + b 3 = ( 11 ) ( 99 1 2 ( 1 1 2 99 ) ) a^{3}+b^{3}=(11)(99-\frac{1}{2}(11^{2}-99)) = 11 ( 99 11 ) =11(99-11) = 11 × 88 = 968 =11\times88=\boxed{968}

a+b=11 a^2+b^2=99 Therefore,ab=11 therefore,a^3+b^3=968

a+b = 11, hence (a+b)^2 = 121, thus a^2 + b^2 +2ab = 121. and a^2 + b^2 = 99, thus ab =11. Now a^3 + b^3 = (a+b)^3 - 3ab(a+b). Now solving this equation will give a^3 + b^3 = 968.

Junaid Razi
Jul 20, 2014

(a+b)square = (11)square

(a)square+ (b)square +2(a.b) = 121

2(a.b) = 121-99

(a.b) = 22/2

(a.b) = 11

(a+b)cube = (11)cube

(a)cube + (b)cube + 3(a.b)(a+b) = 1331 (formula)

(a)cube + (b)cube + 3(11)(11) = 1331

(a)cube + (b)cube +363 = 1331

(a)cube + (b)cube = 1331-363

(a)cube + (b)cube =968

i like this

aswin suresh - 6 years, 10 months ago
EQbal Osama
Jul 18, 2014

a+b = 11 ...... equation 1 a^2+b^2 = 99 ...... equation 2

(a+b)^2 = a^2+2ab+b^2 - from equation 1 & 2 11^2 = 99 + 2ab ab = 11..... equation 3

(a+b)^3 = a^3+3ab^2+3a^2b+b^3 from equation 1 & 3 11^3 = a^3+b^3 + 3(11b+11a)

a^3+b^3 = 11^3 - 33(a+b) = 968

Let a+b=11 equation(1) a^2+b^2=99 (a+b)^2+(-2ab)=99 substitute eq.1 〖11〗^2+(-2ab)=99 -2ab=99-121 -2ab=-22 ab=11 equation(2) Now,(a+b)^3=(a+b)(a+b)(a+b) =〖(a〗^2+2ab+b^2)(a+b) =(a^3+3a^2 b+〖3ab〗^2+b^3 ) =(a+b)^3-(3a^2 b+〖3ab〗^2 ) =(a+b)^3-3ab(a+b) Now,substitute the values of eq.1 and 2 =〖11〗^3-3(11)(11) =968

Member Wilcox
Jul 10, 2014

They give us two equations and we will square, subtract and multiply them together to find the answer.

As x+y is 11, you can square that to find (x+y)^2 is 121. Expand that expression to x^2 + 2xy + y^2 and now subtract x^2 + y^2 = 99, to find 2xy=22 and so xy=11.

If we multiply the two equations given, we see 11x99 = x^3 + xy(x + y) + y^3. So 11x99 = the sum of cubes + 11x11. So then the cubes are 11x88 or 968.

thank u such a good method

Shahadat Hossain Raqib - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...