The U-sub isn't completely obvious

Calculus Level 4

E = 0 π / 4 sin x + cos x 1 sin x cos x + 1 d x \displaystyle \large \mathscr{E} = \int_{0}^{\pi/4} \dfrac{\sin x + \cos x - 1}{\sin x - \cos x + 1} \, dx

If E \mathscr{E} can be represented in the form ln ( a + b c ) \ln \left(a + \dfrac{b}{\sqrt{c}} \right) , where a , b a,b and c c are integers with c c square-free, find a + b + c a+b+c .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 27, 2016

Relevant wiki: Integration Tricks

Use 1 cos x = 2 sin 2 x 2 \small{\color{teal}{1-\cos x=2\sin^2\frac x2}} and sin x = 2 sin x 2 cos x 2 \small{\color{teal}{\sin x=2\sin \frac x2\cos \frac x2}} and cancel factor of 2 sin x 2 \small{2\sin \frac x2} from both numerator and denominator.

E = 0 π / 4 cos x 2 sin x 2 cos x 2 + sin x 2 d x \large\mathscr E=\displaystyle\int_0^{\pi/4}\dfrac{\cos \frac x2-\sin \frac x2}{\cos \frac x2+\sin \frac x2}\mathrm{d}x

Substitute cos x 2 + sin x 2 = t \cos \frac x2+\sin \frac x2=t so that integral is of the form 2 d t t = 2 ln t + C \displaystyle\int \dfrac{2\mathrm{d}t}{t}=2\ln t+C = 2 [ ln ( cos x 2 + sin x 2 ) ] 0 π / 4 \large =2\left[\ln\left(\cos \frac x2+\sin \frac x2\right)\right]_0^{\pi/4} = [ ln ( cos x 2 + sin x 2 ) 2 ] 0 π / 4 \large =\left[\ln\left(\cos \frac x2+\sin \frac x2\right)^2\right]_0^{\pi/4} = [ ln ( 1 + sin x ) ] 0 π / 4 \large =\left[\ln\left(1+\sin x\right)\right]_0^{\pi/4} = ln ( 1 + 1 2 ) \large =\ln\left(1+\dfrac1{\sqrt 2}\right)

1 + 1 + 2 = 4 \Large \therefore 1+1+2=\boxed 4

Nice solution, I made the change t = tan x 2 t = \tan \frac{x}{2} and it took me 25 minutes to solve it... :P . And I'm not able either to preview my posts. It's a little dissapointing...

Guillermo Templado - 4 years, 11 months ago

Log in to reply

Thanks.... And yep not able to preview is one of the changes made on brilliant which made things pretty worse!

Rishabh Jain - 4 years, 11 months ago

You didn't use U-substitution...

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Has brilliant changed some of the features on brilliant?? My upvote's button has been changed, no time specified for comments (i.e 4 hours ago, 2 hours ago etc..), not able to scroll some of the solutions, and commenting on solutions and replying has become real messy... And obviously activity feature on brilliant hasn't been restored yet( Is it happening only on my mobile?) And guess what I'm not able to preview this comment before posting it :-).. There's no button for that...

Rishabh Jain - 4 years, 11 months ago

Log in to reply

It happened a few hours ago. 16 hours ago, it was still the old format. This morning (9 hours ago) I saw the new format and was quite surprised. Now the commenting format looks like one of those stack exchange forums or something. I don't know why the changes were made, and tbh, I preferred the previous format. Now it looks so grey...

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Exactly... It has became more complicated now

Rishabh Jain - 4 years, 11 months ago

Mere formality... :-)

Rishabh Jain - 4 years, 11 months ago
Hung Woei Neoh
Jun 28, 2016

E = 0 π / 4 sin x + cos x 1 sin x cos x + 1 d x = 0 π / 4 ( sin x + cos x 1 ) ( cos x sin x + 1 ) ( sin x cos x + 1 ) ( cos x sin x + 1 ) d x = 0 π / 4 sin x cos x sin 2 x + sin x + cos 2 x sin x cos x + cos x cos x + sin x 1 sin x cos x sin 2 x + sin x cos 2 x + sin x cos x cos x + cos x sin x + 1 d x = 0 π / 4 2 sin x sin 2 x 1 + 1 sin 2 x 2 sin x cos x ( cos 2 x + sin 2 x ) + 1 d x = 0 π / 4 2 sin x 2 sin 2 x 2 sin x cos x d x = 0 π / 4 ( 1 cos x + sin x cos x ) d x = 0 π / 4 ( sec x ( sec x + tan x ) sec x + tan x + sin x cos x ) d x = 0 π / 4 ( sec x tan x + sec 2 x sec x + tan x + sin x cos x ) d x = [ ln ( sec x + tan x ) + ln ( cos x ) ] 0 π / 4 = [ ln ( cos x ( 1 cos x + sin x cos x ) ) ] 0 π / 4 = [ ln ( 1 + sin x ) ] 0 π / 4 = ln ( 1 + sin π 4 ) ln ( 1 + sin 0 ) = ln ( 1 + 1 2 ) ln ( 1 + 0 ) = ln ( 1 + 1 2 ) \mathscr{E} = \displaystyle \int_{0}^{\pi/4} \dfrac{\sin x +\cos x-1}{\sin x - \cos x + 1} dx\\ =\displaystyle \int_{0}^{\pi/4} \dfrac{\left(\sin x +\cos x-1\right)\color{#3D99F6}{\left(\cos x - \sin x + 1\right)}}{\left(\sin x - \cos x + 1\right)\color{#3D99F6}{\left(\cos x - \sin x + 1\right)}}dx\\ =\displaystyle \int_{0}^{\pi/4} \dfrac{\color{#D61F06}{\sin x \cos x} - \sin^2 x \color{#EC7300}{+ \sin x} \color{#69047E}{+ \cos^2 x}\color{#D61F06}{-\sin x \cos x}\color{#20A900}{+\cos x- \cos x}\color{#EC7300}{+\sin x} - 1}{\color{#D61F06}{\sin x \cos x} - \sin^2 x\color{#EC7300}{+\sin x}-\cos^2 x \color{#D61F06}{+\sin x \cos x}\color{#20A900}{ - \cos x +\cos x} \color{#EC7300}{- \sin x} + 1}dx\\ =\displaystyle \int_{0}^{\pi/4} \dfrac{2 \sin x - \sin^2 x - 1 \color{#69047E}{+1-\sin^2 x}}{2\sin x \cos x - \color{#69047E}{(\cos^2 x + \sin^2 x)}+1}dx\\ =\displaystyle \int_{0}^{\pi/4} \dfrac{2 \sin x - 2\sin^2 x}{2\sin x \cos x}dx\\ =\displaystyle \int_{0}^{\pi/4} \left(\dfrac{1}{\cos x} +\dfrac{-\sin x}{\cos x} \right)dx\\ =\displaystyle \int_{0}^{\pi/4} \left(\dfrac{\sec x(\sec x+ \tan x)}{\sec x+ \tan x} +\dfrac{-\sin x}{\cos x} \right)dx\\ =\displaystyle \int_{0}^{\pi/4} \left(\dfrac{\sec x\tan x + \sec^2 x}{\sec x+ \tan x} +\dfrac{-\sin x}{\cos x} \right)dx\\ =\Big[\ln\left(\sec x+\tan x\right)+\ln\left(\cos x\right)\Big]_{0}^{\pi/4}\\ =\Big[\ln\left(\cos x\left(\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}\right)\right)\Big]_{0}^{\pi/4}\\ =\Big[\ln\left(1+\sin x\right)\Big]_{0}^{\pi/4}\\ =\ln \left(1+\sin \dfrac{\pi}{4}\right) - \ln\left(1+\sin 0\right)\\ =\ln \left(1+\dfrac{1}{\sqrt{2}}\right) - \ln(1+0)\\ =\ln \left(1+\dfrac{1}{\sqrt{2}}\right)

a = 1 , b = 1 , c = 2 , a + b + c = 1 + 1 + 2 = 4 \implies a =1,\;b=1,\;c=2,\;a+b+c=1+1+2=\boxed{4}

a + b + c = 4

Log in to reply

Hmmmmm?????

Hung Woei Neoh - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...