There's not enough information given

Geometry Level 4

A B C ABC is a triangle with A C B = 4 5 \angle ACB = 45^\circ . D D is a point on A C AC such that A D = 2 D C AD=2DC . If A D B = 6 0 \angle ADB = 60^\circ , what is the measure (in degrees) of C A B \angle CAB ?


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Wei Liang Gan
May 20, 2014

Drop a perpendicular from A A to B D BD that meets B D BD at E E and join C E CE . Since A E D = 9 0 \angle AED = 90^\circ and A D E = 6 0 \angle ADE = 60^\circ , A E D AED is a 30-60-90 triangle so D E = 1 2 A D = 1 2 ( 2 D C ) = D C DE = \frac{1}{2}AD = \frac{1}{2}(2DC) = DC so D C E DCE is an isosceles triangle. We proceed to calculate various other angles and we use the above result in the third calculation.

D A E = 18 0 A D E A E D = 18 0 6 0 9 0 = 3 0 \angle DAE = 180^\circ - \angle ADE - \angle AED = 180^\circ - 60^\circ - 90^\circ = 30^\circ C D E = 18 0 A D E = 18 0 6 0 = 12 0 \angle CDE = 180^\circ - \angle ADE = 180^\circ - 60^\circ = 120^\circ D C E = D E C = 1 2 ( 18 0 C D E ) = 1 2 ( 18 0 12 0 ) = 3 0 \angle DCE = \angle DEC = \frac{1}{2}(180^\circ - \angle CDE) = \frac{1}{2}(180^\circ - 120^\circ) = 30^\circ E C B = D C B D C E = 4 5 3 0 = 1 5 \angle ECB = \angle DCB - \angle DCE = 45^\circ - 30^\circ = 15^\circ E B C = 18 0 D C B C D B = 18 0 4 5 12 0 = 1 5 \angle EBC = 180^\circ - \angle DCB - \angle CDB = 180^\circ - 45^\circ - 120^\circ = 15^\circ

Note from the above calculations that D A E = D C E = 3 0 \angle DAE = \angle DCE = 30^\circ and E C B = E B C = 1 5 \angle ECB = \angle EBC = 15^\circ from which we can deduce respectively that E A C EAC and E B C EBC are isosceles triangles giving us E A = E C EA = EC and E C = E B EC = EB respectively.

This gives us E A = E B EA = EB so E A B EAB must also be isosceles. Since A E B = 9 0 \angle AEB = 90^\circ , A E B AEB must be a 45-45-90 triangle and in conclusion we get C A B = E A C + E A B = 3 0 + 4 5 = 7 5 \angle CAB = \angle EAC + \angle EAB = 30^\circ + 45^\circ = 75^\circ which is our desired answer.

This was the only solution submitted, though so many people got it correct. This is an extremely clear solution, and the initial construction of E E is motivated by the condition A D = 2 D C AD = 2 DC , and later by the realization that E E is the circumcenter of triangle A B C ABC .

Calvin Lin Staff - 7 years ago

Mine was also same. . . But i constructed 15 degrees and i proved the right angled triangleAED

Amenreet Singh Sodhi - 5 years, 9 months ago
D H
Aug 8, 2016

Given - ABC is a triangle in which angle ACB = 45 degrees . D is a point on AC such that AD = 2DC . Angle ADB = 60 degrees . To Find :-- Angle CAB. Construction : - Draw BE perpendicular to AC to meet AC at E .

In the figure , let DC = x x then AD = 2 x x

Now, in right triangle BED , B E D E \frac{BE}{DE} = tan 60
=> B E D E \frac{BE}{DE} = ( 3 ) 1 \frac{√(3)}{1} So, let BE = √(3) y y and DE = y y

Now, in right triangle BEC , B E C E \frac{BE}{CE} = tan 45 => B E C E \frac{BE}{CE} = 1 .'. CE = BE = √(3) y y
But CE = CD + DE = x x + y y

.'. √(3) y y = x x + y y => x x = {√3 - 1} y y

Now, AE = AD - DE = 2 x 2x - y y = 2{√3 - 1} y y - y y = 2√3 y y - 2 y y - y y = {2√3 - 3} y y

Consider right triangle ABE , tan CAB = B E A E \frac{BE}{AE} => tan ∠CAB = 3 y ( 2 3 3 ) y \frac{√3y}{(2√3 - 3)y} => tan ∠CAB = 3.732........... => tan ∠CAB = tan 75
=> ∠CAB= 75 ---------------------------------------------------------an easy solution by Vishwash Kumar

This is an easy solution .

D H - 4 years, 10 months ago
Md Omur Faruque
Aug 27, 2015

From the law of sine, a sin 12 0 = x sin 1 5 \frac {a} {\sin120^{\circ}}=\frac {x} {\sin15^{\circ}} a = sin 12 0 sin 1 5 x = sin 6 0 sin 1 5 x = 3 2 1 2 ( 1 + 3 ) x = 6 ( 1 + 3 ) 2 x \Rightarrow a=\frac{\sin120^{\circ}}{\sin15^{\circ}}x=\frac{\sin60^{\circ}}{\sin15^{\circ}}x=\frac{\frac{\sqrt3}{2}}{\frac{1}{\sqrt2(1+\sqrt3)}} x=\frac{\sqrt6(1+\sqrt3)}{2}x [ Used sin 1 5 = sin ( 4 5 3 0 ) to get, sin 1 5 = 1 2 ( 1 + 3 ) ] \color{teal} {\left[\text {Used }\sin15^{\circ} =\sin(45^{\circ}-30^{\circ}) \text{ to get, } \sin15^{\circ}=\frac{1}{\sqrt2(1+\sqrt3)}\right] }

From the law of cosine, c = a 2 + ( 3 x ) 2 2 × a × 3 x × cos 4 5 = 6 x 2 = 6 x c=\sqrt{a^2+(3x)^2-2\times a\times 3x\times \cos 45^{\circ}}=\sqrt{6x^2}=\sqrt6x

Using the law of sine again we get, c sin 4 5 = a sin θ \frac {c} {\sin 45^{\circ}}=\frac {a} {\sin \theta} sin θ = a c sin 4 5 = 6 ( 1 + 3 ) 2 x 6 x × 1 2 = 1 + 3 2 2 \Rightarrow \sin \theta =\frac{a} {c} \sin 45^{\circ}=\frac{\frac{\sqrt6(1+\sqrt3)}{2}x} {\sqrt6x}\times \frac{1}{\sqrt2}=\frac{1+\sqrt3}{2\sqrt2} θ = sin 1 ( 1 + 3 2 2 ) = 7 5 or, 10 5 [ As, 0 < θ < 18 0 ] \Rightarrow \theta =\sin^{-1}\left(\frac{1+\sqrt3}{2\sqrt2}\right) =75^{\circ}\, \text{or,} \, 105^{\circ}\, \color{teal} {[\text{As, } 0^{\circ}<\theta<180^{\circ}]} Now, A C > A B \because AC>AB B > C = 4 5 \Rightarrow \angle B>\angle C=45^{\circ} B + C > 9 0 \Rightarrow \angle B+\angle C>90^{\circ} A < ( 18 0 9 0 ) \Rightarrow \angle A<(180^{\circ}-90^{\circ}) θ < 9 0 \Rightarrow \theta<90^{\circ}

Thus, only possible value of, θ = 7 5 \theta =\color{#0C6AC7} {\boxed {75^{\circ}}}

Same method!

Kishore S. Shenoy - 5 years, 9 months ago

Log in to reply

It seemed pretty easy to me. Don't know how it got level 5.

MD Omur Faruque - 5 years, 9 months ago

Log in to reply

Yup! I too wonder why...

Kishore S. Shenoy - 5 years, 9 months ago

Log in to reply

@Kishore S. Shenoy Yes, you can assume x = 1 x=1 . Actually, I've solved it with x = 1 x=1 . But in order to assume that in my solution, first I would have to clarify that whatever x x may be, they will be similar triangles, making A \angle A always same.

So, I think it wouldn't have been easier.

MD Omur Faruque - 5 years, 9 months ago

Log in to reply

@Md Omur Faruque No, while calculation for ourselves, you can use that. That's what I meant!

Kishore S. Shenoy - 5 years, 9 months ago

You can make one more assumption, x = 1 x = 1 . That'll make computations easy, since we need only ratios, cosines.

Kishore S. Shenoy - 5 years, 9 months ago

It's now Level 4

Kishore S. Shenoy - 5 years, 9 months ago

I found B D BD and verified whether I did it write or not!

Kishore S. Shenoy - 5 years, 9 months ago
Calvin Lin Staff
May 13, 2014

Solution 1: Let O O be the circumcenter of triangle C B D CBD . Since B D C \angle BDC is obtuse, O O and D D lie on the opposite sides of B C BC . Then B O D = 2 B C D = 9 0 , D O C = 2 C B D = 3 0 \angle BOD = 2 \angle BCD = 90^\circ, \angle DOC = 2 \angle CBD = 30^\circ and thus, B O C = B O D + B O C = 12 0 \angle BOC = \angle BOD + \angle BOC = 120^\circ .

In isosceles triangle O B C OBC , we have O C B = O B C = 18 0 B O C 2 = 3 0 . \angle OCB=\angle OBC = \frac{180^\circ - \angle BOC}{2} = 30^\circ. In isosceles triangle O D C ODC , we have O D C = O C D = D C B + B C O = 4 5 + 3 0 = 7 5 \angle ODC = \angle OCD = \angle DCB + \angle BCO = 45^\circ + 30^\circ = 75^\circ and it follows that D O C = 3 0 \angle DOC = 30^\circ .

Let E E be the intersection point between lines B C BC and D O DO . Since B C O = E C O = 3 0 = D O C = E O C \angle BCO = \angle ECO= 30^\circ = \angle DOC = \angle EOC , therefore, E O C EOC is an isosceles triangle, so E O = C E EO=CE . We have that, E O B EOB is a right triangle at O O , thus, E B = E O sin 3 0 = 2 E C EB = \frac {EO}{\sin 30^\circ} = 2 EC . From the ratio of lengths, C D : D A = 1 : 2 = C E : E B CD:DA = 1:2 = CE:EB , thus, D E A B DE \parallel AB . Hence, A B D = B D O = D B O \angle ABD = \angle BDO = \angle DBO = 18 0 D O B 2 = 18 0 9 0 2 = 4 5 =\frac{180^\circ - \angle DOB}{2} = \frac{180^\circ - 90^\circ}{2} = 45^\circ . Therefore, C A B = 18 0 A D B A B D = 18 0 6 0 4 5 = 7 5 \angle CAB = 180^\circ - \angle ADB - \angle ABD = 180^\circ - 60^\circ -45^\circ = 75^\circ .

Solution 2: Let C A B = α \angle CAB = \alpha . Since A D B = 6 0 \angle ADB = 60^\circ , 0 < α < 12 0 0 < \alpha < 120^\circ . Using the sine rule on triangle D B C DBC , we get D B sin 4 5 = D C sin 1 5 \frac {DB}{\sin 45^\circ} = \frac {DC} {\sin 15^\circ} . Using the sine rule on triangle D B A DBA , we get D B sin α = D A sin ( 12 0 α ) \frac {DB}{\sin \alpha } = \frac {DA} {\sin (120^\circ - \alpha) } . This gives sin ( 12 0 α ) sin α = D A D B = 2 D C D B = 2 sin 1 5 sin 4 5 \frac {\sin (120^\circ - \alpha)} {\sin \alpha} = \frac {DA}{DB} = \frac {2DC}{DB} = \frac { 2 \sin 15^\circ} {\sin45^\circ} .

Expanding out the LHS of the above equation, we get sin ( 12 0 α ) sin α = sin 12 0 cos α cos 12 0 sin α sin α = sin 12 0 cot α cos 12 0 \frac {\sin (120^\circ - \alpha)} {\sin \alpha } = \frac { \sin 120^\circ \cos \alpha - \cos 120^\circ \sin \alpha } {\sin \alpha} = \sin 120^\circ \cot \alpha - \cos 120^\circ . Since cot α \cot \alpha is strictly decreasing in the interval 0 < α < 12 0 0 < \alpha < 120^\circ , the LHS will be strictly decreasing in the same interval. We see that the LHS decrease from \infty (when α = 0 \alpha = 0^\circ to 0 0 (when α = 12 0 \alpha = 120^\circ ), hence there exists a unique solution to sin ( 12 0 α ) sin α = 2 sin 1 5 sin 4 5 \frac {\sin (120^\circ - \alpha)} {\sin \alpha} = \frac { 2 \sin 15^\circ} {\sin45^\circ} .

We will now show that α = 7 5 \alpha = 75^\circ satisfies the equation. We have 2 sin 7 5 sin 1 5 = cos ( 7 5 + 1 5 ) cos ( 7 5 1 5 ) = 1 2 = sin 2 4 5 2 \sin 75^\circ \sin 15^\circ = \cos (75^\circ + 15^\circ) - \cos(75^\circ - 15^\circ) = \frac {1}{2} = \sin^2 45^\circ . Therefore, 2 sin 1 5 sin 4 5 = sin 4 5 sin 7 5 \frac{2\sin 15^\circ}{\sin 45^\circ} = \frac{\sin 45^\circ}{\sin 75^\circ} = sin ( 12 0 α ) sin α = \frac { \sin (120^\circ -\alpha) } {\sin \alpha} . Thus, the answer is 75.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...