V = ∫ 1 2 ∫ 1 2 ∫ 1 2 f ( x , y , z ) ln ( 1 + 1 + f ( x , y , z ) 1 ) d x d y d z
where f ( x , y , z ) = x + y + z .
Evaluate ⌊ 1 0 0 ( 2 V − 1 ) ⌋ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Interesting substitution to make. How did you think about this approach?
@Calvin Lin , it was more a sort of reverse engineering. When I first saw the integral I (I saw this problem somewhere on the internet), instead of invoking symmetry I tried the method of integrating one by one. When I failed, I realized that there must be some other method. So I decided making a problem where one needs to realize that is a simple problem approached in a wrong manner.
Log in to reply
WOAH NICE QUESTION AND ANSWER!!! +1
Log in to reply
Thanks. :)
Log in to reply
@Sudeep Salgia – Nice Sudeep! I like to learn about lots of lesson about calculus.hoping will you aid me about this soon as soon you can. Thanks for sharing this.
Problem Loading...
Note Loading...
Set Loading...
First we will simplify what we need to evaluate:
2 V − 1 = 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 f ( x , y , z ) ln ( 1 + 1 + f ( x , y , z ) 1 ) d x d y d z − 1 = ∫ 1 2 ∫ 1 2 ∫ 1 2 2 f ( x , y , z ) ln ( 1 + f ( x , y , z ) 2 + f ( x , y , z ) ) d x d y d z − ∫ 1 2 ∫ 1 2 ∫ 1 2 d x d y d z = ∫ 1 2 ∫ 1 2 ∫ 1 2 2 f ( x , y , z ) ( ∫ 1 2 f ( x , y , z ) + w d w ) − 1 d x d y d z = ∫ 1 2 ∫ 1 2 ∫ 1 2 ( ∫ 1 2 x + y + z + w 2 ( x + y + z ) − 1 d w ) d x d y d z = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 x + y + z + w x + y + z − w d x d y d z d w
So now, we need to evaluate the integral I = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 x + y + z + w x + y + z − w d x d y d z d w .
The integral can very easily evaluated using symmetry arguments. Since the limits of all the variables is the same, we can write,
I = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 x + y + z + w x + y + z − w d x d y d z d w = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 x + y + z + w x + y − z + w d x d y d z d w = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 x + y + z + w x − y + z + w d x d y d z d w = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 x + y + z + w − x + y + z + w d x d y d z d w
So on adding up all of them, we get,
⇒ 4 I = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 x + y + z + w 2 ( x + y + z + w ) d x d y d z d w = ∫ 1 2 ∫ 1 2 ∫ 1 2 ∫ 1 2 2 d x d y d z d w = 2 ( 2 − 1 ) ( 2 − 1 ) ( 2 − 1 ) ( 2 − 1 ) = 2
Therefore , 2 V − 1 = I = 4 2 = 2 1 . Thus the required value is 5 0 .