Think beyond this unit box

Calculus Level 5

V = 1 2 1 2 1 2 f ( x , y , z ) ln ( 1 + 1 1 + f ( x , y , z ) ) d x d y d z \large V =\int_1^2 \int_1^2 \int_1^2 f(x,y,z) \ln \left( 1 + \frac{1}{1 + f(x,y,z)} \right) \text{ d}x \text{ d}y \text{ d}z

where f ( x , y , z ) = x + y + z \displaystyle f(x,y,z) = x + y + z .

Evaluate 100 ( 2 V 1 ) \displaystyle \lfloor 100(2V - 1) \rfloor .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sudeep Salgia
Jul 17, 2015

First we will simplify what we need to evaluate:

2 V 1 = 2 1 2 1 2 1 2 f ( x , y , z ) ln ( 1 + 1 1 + f ( x , y , z ) ) d x d y d z 1 = 1 2 1 2 1 2 2 f ( x , y , z ) ln ( 2 + f ( x , y , z ) 1 + f ( x , y , z ) ) d x d y d z 1 2 1 2 1 2 d x d y d z = 1 2 1 2 1 2 2 f ( x , y , z ) ( 1 2 d w f ( x , y , z ) + w ) 1 d x d y d z = 1 2 1 2 1 2 ( 1 2 2 ( x + y + z ) x + y + z + w 1 d w ) d x d y d z = 1 2 1 2 1 2 1 2 x + y + z w x + y + z + w d x d y d z d w \displaystyle \begin{array}{c}\\ 2V - 1 && = 2 \int_1^2 \int_1^2 \int_1^2 f(x,y,z) \ln \left( 1 + \frac{1}{1 + f(x,y,z)} \right) \text{ d}x \text{ d}y \text{ d}z - 1 \\ && = \int_1^2 \int_1^2 \int_1^2 2 f(x,y,z) \ln \left( \frac{2 + f(x,y,z)}{1 + f(x,y,z)} \right) \text{ d}x \text{ d}y \text{ d}z - \int_1^2 \int_1^2 \int_1^2 \text{ d}x \text{ d}y \text{ d}z \\ && = \int_1^2 \int_1^2 \int_1^2 2 f(x,y,z) \left( \int_1^2 \frac{\text{d}w}{f(x,y,z) + w} \right) - 1 \text{ d}x \text{ d}y \text{ d}z \\ && = \int_1^2 \int_1^2 \int_1^2 \left (\int_1^2 \frac{2 (x+y+z)}{x+y+z+ w} - 1 \text{ d}w \right) \text{ d}x \text{ d}y \text{ d}z \\ && = \int_1^2 \int_1^2 \int_1^2 \int_1^2 \frac{x+y+z-w}{x+y+z+w} \text{ d}x \text{ d}y \text{ d}z \text{d}w \\ \end{array}

So now, we need to evaluate the integral I = 1 2 1 2 1 2 1 2 x + y + z w x + y + z + w d x d y d z d w \displaystyle I = \int_1^2 \int_1^2 \int_1^2 \int_1^2 \frac{x+y+z-w}{x+y+z+w} \text{ d}x \text{ d}y \text{ d}z \text{d}w .

The integral can very easily evaluated using symmetry arguments. Since the limits of all the variables is the same, we can write,
I = 1 2 1 2 1 2 1 2 x + y + z w x + y + z + w d x d y d z d w = 1 2 1 2 1 2 1 2 x + y z + w x + y + z + w d x d y d z d w = 1 2 1 2 1 2 1 2 x y + z + w x + y + z + w d x d y d z d w = 1 2 1 2 1 2 1 2 x + y + z + w x + y + z + w d x d y d z d w \displaystyle \begin{array}{c}\\ I && = \int_1^2 \int_1^2 \int_1^2 \int_1^2 \frac{x+y+z-w}{x+y+z+w} \text{ d}x \text{ d}y \text{ d}z \text{d}w \\ && = \int_1^2 \int_1^2 \int_1^2 \int_1^2 \frac{x+y-z+w}{x+y+z+w} \text{ d}x \text{ d}y \text{ d}z \text{d}w \\ && = \int_1^2 \int_1^2 \int_1^2 \int_1^2 \frac{x-y+z+w}{x+y+z+w} \text{ d}x \text{ d}y \text{ d}z \text{d}w \\ && = \int_1^2 \int_1^2 \int_1^2 \int_1^2 \frac{-x+y+z+w}{x+y+z+w} \text{ d}x \text{ d}y \text{ d}z \text{d}w \\ \end{array}

So on adding up all of them, we get,

4 I = 1 2 1 2 1 2 1 2 2 ( x + y + z + w ) x + y + z + w d x d y d z d w = 1 2 1 2 1 2 1 2 2 d x d y d z d w = 2 ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) = 2 \displaystyle \begin{array}{c}\\ \Rightarrow 4I && = \int_1^2 \int_1^2 \int_1^2 \int_1^2 \frac{2\left(x+y+z+w \right)}{x+y+z+w} \text{ d}x \text{ d}y \text{ d}z \text{d}w \\ && = \int_1^2 \int_1^2 \int_1^2 \int_1^2 2 \text{ d}x \text{ d}y \text{ d}z \text{d}w \\ && = 2(2-1)(2-1)(2-1)(2-1) = 2 \\ \end{array}

Therefore , 2 V 1 = I = 2 4 = 1 2 \displaystyle 2V - 1 = I = \frac{2}{4} = \frac{1}{2} . Thus the required value is 50 \boxed{50} .

Moderator note:

Interesting substitution to make. How did you think about this approach?

@Calvin Lin , it was more a sort of reverse engineering. When I first saw the integral I I (I saw this problem somewhere on the internet), instead of invoking symmetry I tried the method of integrating one by one. When I failed, I realized that there must be some other method. So I decided making a problem where one needs to realize that is a simple problem approached in a wrong manner.

Sudeep Salgia - 5 years, 11 months ago

Log in to reply

WOAH NICE QUESTION AND ANSWER!!! +1

Pi Han Goh - 5 years, 11 months ago

Log in to reply

Thanks. :)

Sudeep Salgia - 5 years, 10 months ago

Log in to reply

@Sudeep Salgia Nice Sudeep! I like to learn about lots of lesson about calculus.hoping will you aid me about this soon as soon you can. Thanks for sharing this.

A Former Brilliant Member - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...