This is Brilliance!

Calculus Level 3

1 2 × 1 2 + 1 2 1 2 × 1 2 + 1 2 1 2 + 1 2 1 2 × = m π m = ? \sqrt{\frac{1}{2}}\times\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}}\times\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}}}\times\cdots = \frac m \pi \\ m = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Discussions for this problem are now closed

Parth Lohomi
Dec 29, 2014

cos π 4 = 1 2 , π 4 = x \cos{\dfrac{\pi}{4}}=\sqrt{\dfrac{1}{2}},\dfrac{\pi}{4}= x

1 2 + 1 2 1 2 = 1 + cos x 2 = cos x 2 \sqrt{\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{1}{2}}}=\sqrt{\dfrac{1+\cos{x}}{2}}=\cos{\dfrac{x}{2}}

1 2 + 1 2 1 2 + 1 2 1 2 = cos x 4 \sqrt{\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{1}{2}}}}=\cos\dfrac{x}{4}

Thus it becomes

P ( n ) = cos x 2 n cos x 2 n 1 cos x P(n) =\cos{\dfrac{x}{2^n}}\cos{\dfrac{x}{2^{n-1}}}\cdots\cos{x}

P ( n ) = 2 sin x 2 n 1 cos x 2 n 1 cos x 2 n 2 cos x 2 2 sin x 2 n 1 P(n) =\dfrac{2\sin{\dfrac{x}{2^{n-1}}}\cos{\dfrac{x}{2^{n-1}}}\cos{\dfrac{x}{2^{n-2}}}\cdots\cos{\dfrac{x}{2}}}{2\sin{\dfrac{x}{2^{n-1}}}}

2 sin x cos x = sin 2 x 2\sin{x}\cos{x}=\sin{2x}

lim n sin 2 x 2 n sin x 2 n 1 \lim_{n\rightarrow\infty}\dfrac{\sin{2x}}{2^n\sin{\dfrac{x}{2^{n-1}}}}

lim n sin 2 x 2 x \lim_{n\rightarrow\infty}\dfrac{\sin{2x}}{2x}

2 sin π 2 π = 2 π \dfrac{2\sin\dfrac{\pi}{2}}{\pi}=\dfrac{2}{\pi}

So

m = 2 \boxed{m=2}

can you please elaborate your explanation a bit further ? I don't understand the part with the second P(n)

Radinoiu Damian - 6 years, 5 months ago

P ( n ) = 2 s i n x 2 n 1 c o s x 2 n 1 c o s x 2 n 2 . . . . . c o s x 2 2 s i n x 2 n 1 P(n) = \dfrac{2sin\dfrac{x}{2^{n-1}}cos\dfrac{x}{2^{n-1}}cos\dfrac{x}{2^{n-2}}..... cos\dfrac{x}{2}}{2sin\dfrac{x}{2^{n-1}}}

2 s i n x c o s x = s i n 2 x 2sinxcosx=sin2x

thus we get(multiplying and divivding by 2 n times and applying the above identity in each step)

l i m n P ( n ) = l i m n s i n 2 x 2 n s i n x 2 n 1 lim_{n \to \infty}P(n) = lim_{n \to \infty}\dfrac{sin2x}{2^{n}sin\dfrac{x}{2^{n-1}}}

l i m n P ( n ) = l i m n s i n x 2 n s i n x 2 n 1 x 2 n 1 × x 2 n 1 lim_{n \to \infty}P(n) = lim_{n \to \infty}\dfrac{sinx}{2^{n}\dfrac{sin\dfrac{x}{2^{n-1}}}{\dfrac{x}{2^{n - 1}}}\times\dfrac{x}{2^{n -1}}}

As ( x 0 \dfrac{x}{\infty} \to 0 )

l i m n P ( n ) = s i n 2 x 2 x lim_{n \to \infty}P(n) = \dfrac{sin2x}{2x}

2 s i n π 2 π = 2 π \dfrac{2sin\dfrac{\pi}{2}}{\pi} = \dfrac{2}{\pi}

U Z - 6 years, 5 months ago

Thanks, I see your solution now. I've written mine also, though I'm not that good with Latex (it is my first attempt)

Radinoiu Damian - 6 years, 5 months ago

@Radinoiu Damian For posting problems with mathematical expressions refer this

For a complete guide for higher mathematical expressions refer This Wikibook


An example -

Writing this we get,


You can refer others too ,

Right Click a problem and select open in a new window

Now just copy it your job becomes easier


For posting images in a comment write

! [Description or leave it blank] (Url of the image) ( don't leave any gap here)

For posting question and solutions its not needed as you now

U Z - 6 years, 5 months ago

Last two steps , kindly explain!

BHinstitute Harendran B - 6 years, 5 months ago

Please referer to @megh choksi 's comment below

Parth Lohomi - 6 years, 4 months ago
Radinoiu Damian
Jan 3, 2015

The first part is the same as Parth's solution, you have to substitute cos ( π 4 ) = cos ( x ) \cos(\frac{\pi}{4}) = \cos(x) . As you follow the terms you get cos ( π 4 ) cos ( π 8 ) cos ( π 16 ) . . . \cos(\frac{\pi}{4}) \cdot \cos(\frac{\pi}{8}) \cdot \cos(\frac{\pi}{16}) ... and so on. Now we know that sin ( x ) x = cos ( x 2 ) cos ( x 4 ) cos ( x 8 ) . . . \frac{\sin(x)}{x} = \cos(\frac{x}{2}) \cdot \cos(\frac{x}{4}) \cdot \cos(\frac{x}{8}) ... . Thus, sin ( x ) x cos ( x ) = m π \frac{\sin(x)}{x} \cdot \cos(x) = \frac {m}{\pi} . After this, we can use the well known goniometric formula for sin ( x ) cos ( x ) = 1 2 [ sin ( x + x ) + sin ( x x ) ] = 1 2 [ sin ( 2 x ) + 0 ] \sin(x) \cdot \cos(x) = \frac{1}{2} \cdot [\sin(x+x) + \sin(x-x)] = \frac{1}{2} \cdot [\sin(2x) + 0] . Now, remember that we said x = π 4 x = \frac{\pi}{4} That implies, sin ( π 2 ) π 2 = m π \frac{\sin(\frac{\pi}{2})}{\frac{\pi}{2}} = \frac{m}{\pi} Finally, m = 2 m = \boxed{2}

Moderator note:

Nicely done! For further reading, you may read up this page .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...