Are they nested?

Calculus Level 5

0 x 3 e x k = 1 1 k + 12 k 2 0 π / 2 ( 2 tan θ 2 tan θ sin 1 / 6 θ ) d θ d x = 1 A π B \Large \int_0^\infty \frac {x^3}{e^x - \frac {\sum_{k=1}^\infty \frac 1{k+12k^2}}{\int_0^{\pi/2} \big(2\tan \theta - 2\tan \theta \sin^{1/6} \theta \big)\ d\theta}} dx = \frac 1{A\pi^B}

Given that A A and B B are integers, find the value of A + B A+B .

Enjoy Solving!

For more calculus problems see this.


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Nov 21, 2015

I = 0 ( x 3 e x ( a = 1 ( 1 a + 12 a 2 ) 0 π 2 ( 2 t a n ( α ) 2 t a n ( α ) ( s i n ( α ) ) 1 6 ) d α ) ) d x I 1 = 0 π 2 ( 2 t a n ( α ) 2 t a n ( α ) ( s i n ( α ) ) 1 6 ) d α L e t ( s i n ( α ) ) 2 = y I 1 = 0 1 ( 1 y 1 12 1 y ) = H 1 12 S = a = 1 ( 1 a + 12 a 2 ) = 1 12 a = 1 ( 1 a ( 1 12 + a ) ) = H 1 12 I = 0 ( x 3 e x 1 ) d x = 0 ( x 4 1 e x 1 ) d x { M 1 e x 1 } ( 3 ) , H e r e { M f } ( s ) i s m e l l i n t r a n s f o r m o f f o v e r s . B y R a m a n u j a n s m a s t e r t h e o r e m , I = Γ ( 4 ) ζ ( 4 ) = π 4 15 = 1 15 π 4 A = 15 B = 4 A + B = 11 I=\int _{ 0 }^{ \infty }{ \left( \frac { { x }^{ 3 } }{ { e }^{ x }-\left( \frac { \sum _{ a=1 }^{ \infty }{ \left( \frac { 1 }{ a+12{ a }^{ 2 } } \right) } }{ \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left( 2tan\left( \alpha \right) -2tan\left( \alpha \right) { \left( sin\left( \alpha \right) \right) }^{ \frac { 1 }{ 6 } } \right) } d\alpha } \right) } \right) } dx\\ { I }_{ 1 }=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left( 2tan\left( \alpha \right) -2tan\left( \alpha \right) { \left( sin\left( \alpha \right) \right) }^{ \frac { 1 }{ 6 } } \right) } d\alpha \\ Let\quad { \left( sin\left( \alpha \right) \right) }^{ 2 }=y\\ \therefore \quad { I }_{ 1 }=\int _{ 0 }^{ 1 }{ \left( \frac { 1-{ y }^{ \frac { 1 }{ 12 } } }{ 1-y } \right) \\ } \quad =\quad { H }_{ \frac { 1 }{ 12 } }\\ S=\sum _{ a=1 }^{ \infty }{ \left( \frac { 1 }{ a+12{ a }^{ 2 } } \right) } \\ \quad =\quad \frac { 1 }{ 12 } \sum _{ a=1 }^{ \infty }{ \left( \frac { 1 }{ a\left( \frac { 1 }{ 12 } +a \right) } \right) } =\quad { H }_{ \frac { 1 }{ 12 } }\\ \therefore \quad I=\int _{ 0 }^{ \infty }{ \left( \frac { { x }^{ 3 } }{ { e }^{ x }-1 } \right) } dx\\ \quad \quad \quad =\int _{ 0 }^{ \infty }{ \left( \frac { { x }^{ 4-1 } }{ { e }^{ x }-1 } \right) } dx\\ \quad \quad \quad \quad \left\{ M\quad \frac { 1 }{ { e }^{ x }-1 } \right\} \left( 3 \right) ,\\ Here\quad \left\{ M\quad f \right\} \left( s \right) \quad is\quad mellin\quad transform\quad of\quad f\quad over\quad s.\\ \therefore \quad By\quad Ramanujan's\quad master\quad theorem,\\ \quad \quad I=\Gamma \left( 4 \right) \zeta \left( 4 \right) =\frac { { \pi }^{ 4 } }{ 15 } =\frac { 1 }{ 15{ \pi }^{ -4 } } \\ A=15\quad B=-4\quad \\ \therefore \quad A+B=11

I too did in the same way. But at last I did like this.

0 x 3 e x 1 = 0 x 3 e x 1 e x = 0 x 3 r = 1 e r x = r = 1 0 x 3 e r x d x = r = 1 1 r 4 0 t 3 e t d t = Γ ( 4 ) × ζ ( 4 ) = π 4 15 \begin{aligned} \int_{0}^{\infty} \dfrac{x^3}{e^x-1} &= \int_{0}^{\infty} \dfrac{x^3 e^{-x}}{1-e^{-x}} \\ &= \int_{0}^{\infty} x^{3} \sum_{r=1}^{\infty} e^{-rx} \\ &= \sum_{r=1}^{\infty} \int_{0}^{\infty}x^3 e^{-rx} dx \\ &=\sum_{r=1}^{\infty} \dfrac{1}{r^4} \int_{0}^{\infty} t^3 e^{-t} dt \\ &= \Gamma (4) \times \zeta (4) = \dfrac{\pi^4}{15} \end{aligned}

Surya Prakash - 5 years, 6 months ago

Log in to reply

Yeah! Thumbs up for simplicity!

Pi Han Goh - 5 years, 6 months ago

Log in to reply

Thumbs up Thumbs up

Surya Prakash - 5 years, 6 months ago

I liked your method!

Aditya Kumar - 5 years, 6 months ago

I see. You are using RMT quite often now. Great!

Kartik Sharma - 5 years, 6 months ago

Log in to reply

Haha. Yes. Rmt reduces steps

Aditya Kumar - 5 years, 6 months ago

Dude. Your problem is way too complicated to read. The most enticing part of this question is to prove the summation is equal to the integral of trig functions. After that, it's just knowing the integral of gamma(n) * zeta(n).

If I were you, I would just ask for "If integral of trig functions is equal to H(n) where H(n) denote the Harmonic number, find the value of 1/n". (or in this case = 1/n - 1)

And I recall correctly, you promised to determine the exact value of H(1/12) but you never did.

Pi Han Goh - 5 years, 6 months ago

Log in to reply

I've sent u a method to derive exact value of H(1/12) on slack. Do check it!

Aditya Kumar - 5 years, 6 months ago

Btw what was your method to solve?

Aditya Kumar - 5 years, 6 months ago

Log in to reply

Basically show that summation = H(1/12) which is immediate by definition, and use y = sinx as the subsitution in that integral to show it is equal to H(1/12) as well. Then it's immediate to see that it's the familiar integral of x^(n)/(e^x - 1) which can be solved via GP or apply the gamma(n) zeta(n) formula directly.

Pi Han Goh - 5 years, 6 months ago

Log in to reply

@Pi Han Goh That's the same method! Only thing is I showed how the last part came by rmt :P

Aditya Kumar - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...