This Problem Was Made In 2016

Geometry Level 5

{ x 3 + 3 x 2 + 2019 x + 2017 = sin 2 θ 1 2 y 3 + 3 y 2 + 2019 y + 2017 = cos 2 θ 1 2 \begin{cases} x^3+3x^2+2019x+2017=\sin^2\theta - \frac{1}{2} \\ y^3+3y^2+2019y+2017=\cos^2\theta - \frac{1}{2} \end{cases}

Given that x x , y y and θ \theta (measured in radians) are real numbers satisfying the system of equations above, find the value of x + y x+y .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Grant Bulaong
Jun 21, 2016

New Solution: (credits to those who commented!)

Let a = x + 1 a=x+1 and b = y + 1 b=y+1 . We see that { a 3 + 2016 a = sin 2 θ 1 2 b 3 + 2016 b = cos 2 θ 1 2 \begin{cases} a^3+2016a=\sin^2\theta - \frac{1}{2} \\ b^3+2016b=\cos^2\theta - \frac{1}{2} \end{cases} Adding both, we have a 3 + b 3 + 2016 ( a + b ) = 0 a^3+b^3+2016(a+b)=0 .

We can factor this further to get ( a + b ) ( a 2 a b + b 2 + 2016 ) = 0 (a+b)(a^2-ab+b^2+2016)=0 , so we have either a + b = x + y + 2 = 0 a+b=x+y+2=0 or a 2 a b + b 2 + 2016 = 0 a^2-ab+b^2+2016=0 .

We express a 2 a b + b 2 + 2016 a^2-ab+b^2+2016 in the form ( a b ) 2 + a b + 2016 (a-b)^2+ab+2016 , then we must have a = b a=b and a b = 2016 ab=-2016 which clearly has no solution.

We can also express a 2 a b + b 2 + 2016 a^2-ab+b^2+2016 in the form a 2 + b 2 + ( a b ) 2 2 + 2016 \dfrac{a^2+b^2+(a-b)^2}{2}+2016 to see that a 2 a b + b 2 + 2016 2016 a^2-ab+b^2+2016\geq2016 .

Thus, we find our solution in a + b = x + y + 2 = 0 a+b=x+y+2=0 . We have x + y = 2 x+y=\boxed{-2} .

Original (Wrong) Solution:

We have sin 2 θ 1 2 = ( cos 2 θ 1 2 ) \sin^2\theta-\frac{1}{2}=-\left(\cos^2\theta-\frac{1}{2}\right) .

We factor the L . H . S . L.H.S. of each equation as { ( x + 1 ) ( x 2 + 2 x + 2017 ) = sin 2 θ 1 2 ( y + 1 ) ( y 2 + 2 y + 2017 ) = cos 2 θ 1 2 \begin{cases} (x+1)(x^2+2x+2017)=\sin^2\theta - \frac{1}{2} \\ (y+1)(y^2+2y+2017)=\cos^2\theta - \frac{1}{2} \end{cases}

Adding both, we have ( x + 1 ) ( x 2 + 2 x + 2017 ) + ( y + 1 ) ( y 2 + 2 y + 2017 ) = 0 (x+1)(x^2+2x+2017)+(y+1)(y^2+2y+2017)=0 . Since x 2 + 2 x + 2017 > ( x + 1 ) 2 0 x^2+2x+2017>\left(x+1\right)^2\geq0 and y 2 + 2 y + 2017 > ( y + 1 ) 2 0 y^2+2y+2017>\left(y+1\right)^2\geq0 , we must have x = 1 x=-1 and y = 1 y=-1 . Thus x + y = 2 x+y=\boxed{-2} .

This is not absolutely right, x = 2 x= -2 and y = 0 y = 0 also fulfills ( x + 1 ) ( x 2 + 2 x + 2017 ) + ( y + 1 ) ( y 2 + 2 y + 2017 ) = ( 1 ) ( 2017 ) + 1 ( 2017 ) = 0 (x + 1)(x^2 + 2x + 2017) + (y + 1)(y^2 + 2 y + 2017) = (-1)(2017) + 1(2017) = 0 . ( x + 1 ) ( x 2 + 2 x + 2017 ) + ( y + 1 ) ( y 2 + 2 y + 2017 ) = ( x + y + 2 ) ( x 2 x y + x + y 2 + y + 2017 ) = 0 (x + 1)(x^2 + 2x + 2017) + (y + 1)(y^2 + 2 y + 2017) = (x + y + 2)(x^2 - xy + x + y^2 + y + 2017) = 0 and since x x , y y and θ \theta are real numbers... Can you continue?

Guillermo Templado - 4 years, 11 months ago

Log in to reply

Yes you are absolutely correct . There will be infinitely many solutions of x x and y y ,but the sum of these variables will always be 2 -2 .

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

Yes,it is like this, but my question is: why the equation x 2 x y + y 2 + x + y + 2017 = 0 x^2 - xy + y^2 + x + y + 2017 = 0 isn't able to have two real solutions for x x and y y ? Because if this equation would have 2 real solutions then x + y x + y could have more possibilities than 2 -2 , and not just only 2 -2 . I don't know if I'm explaining good...

Guillermo Templado - 4 years, 11 months ago

Log in to reply

@Guillermo Templado x 2 x y + y 2 + x + y + 1 = 2016 x^2-xy+y^2+x+y+1=-2016 2 x 2 2 x y + 2 y 2 + 2 x + 2 y + 2 = 4032 2x^2-2xy+2y^2+2x+2y+2=-4032 ( x y ) 2 + ( x + 1 ) 2 + ( y + 1 ) 2 = 4032 (x-y)^2+(x+1)^2+(y+1)^2=-4032

Shaun Leong - 4 years, 11 months ago

Grant. Factor it furthermore and you will get (x + y + 2)(x^2 - xy + y^2 + 2016) = 0

Rindell Mabunga - 4 years, 11 months ago

Thanks everyone. I put all of these into a new solution while keeping my first one for others to see where I went wrong.

Grant Bulaong - 4 years, 11 months ago

Why is -1/2 + -1/2 = 0

Alex Linklater - 4 years, 11 months ago

Log in to reply

It is actually sin 2 θ 1 2 + cos 2 θ 1 2 = 0 \sin^2\theta - \frac{1}{2}+ \cos^2\theta - \frac{1}{2}=0 .

Grant Bulaong - 4 years, 11 months ago

lakas ni grant

Norwyn Kah - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...